Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status Code style: black

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is one of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

Other members of the boost-histogram family include:

  • Hist: The first-party analyst-friendly histogram library that extends boost-histogram with named axes, many new shortcuts including UHI+, plotting shortcuts, and more.
  • UHI: Specification for Histogram library interop, especially for plotting.
  • mplhep: Plotting extension for matplotlib with support for UHI histograms.
  • histoprint: Histogram display library for the command line with support for UHI.
  • dask-histogram: Dask support for boost-histogram.

Usage

Slideshow of features. See expandable text below if the image is not readable.

Text intro (click to expand)
import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2],
    [0.1, 0.4, 0.9],
)

# NumPy array view into histogram counts, no overflow bins
values = hist.values()

# Make a new histogram with just the second axis, summing over the first, and
# rebinning the second into larger bins:
h2 = hist[::sum, :: bh.rebin(2)]

We support the uhi PlottableHistogram protocol, so boost-histogram/Hist histograms can be plotted via any compatible library, such as mplhep.

Cheatsheet

Simplified list of features (click to expand)
  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, *, underflow=True, overflow=True, growth=False, circular=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], *, underflow=True, overflow=True, circular=False): Uneven bin spacing
    • bh.axis.IntCategory([...], *, growth=False): Integer categories
    • bh.axis.StrCategory([...], *, growth=False): String categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .storage_type: Fetch the histogram storage type
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers). Can also reorder axes.
    • .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0 (growing axis remain the same size)
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports UHI Indexing
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like NumPy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • All objects support copy/deepcopy/pickle
    • Fully statically typed, tested with MyPy.

Installation

You can install this library from PyPI with pip:

python3 -m pip install boost-histogram

All the normal best-practices for Python apply; Pip should not be very old (Pip 9 is very old), you should be in a virtual environment, etc. Python 3.7+ is required; for older versions of Python (3.5 and 2.7), 0.13 will be installed instead, which is API equivalent to 1.0, but will not be gaining new features. 1.3.x was the last series to support Python 3.6.

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run the above command on a supported platform. Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux2014 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 3.7, 3.8, 3.9, 3.10
ManyLinux2014 ARM64 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 3.7, 3.8, 3.9, 3.10
MuslLinux_1_1 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12
macOS 10.9+ 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 3.7, 3.8, 3.9, 3.10
macOS Universal2 Arm64 3.8, 3.9, 3.10, 3.11, 3.12
Windows 32 & 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12
Windows 64-bit 3.7, 3.8, 3.9, 3.10
  • manylinux2014: Requires pip 19.3.
  • ARM on Linux is supported. PowerPC or IBM-Z available on request.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.8+ (requires Pip 21.0.1 or newer).

If you are on a Linux system that is not part of the "many" in manylinux or musl in musllinux, such as ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel. All dependencies are header-only and included.

Conda-Forge

The boost-histogram package is available on conda-forge, as well. All supported variants are available.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "SDist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, or msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

Boost is not required or needed (this only depends on included header-only dependencies). You can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

Kyle Cranmer

📖

Aman Goel

📖 💻

Jay Gohil

📖

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-1.4.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

boost_histogram-1.4.0-pp310-pypy310_pp73-win_amd64.whl (739.5 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.0-pp39-pypy39_pp73-win_amd64.whl (739.5 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.0-pp38-pypy38_pp73-win_amd64.whl (738.5 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.0-pp37-pypy37_pp73-win_amd64.whl (738.2 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.0-cp312-cp312-win_amd64.whl (743.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

boost_histogram-1.4.0-cp312-cp312-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

boost_histogram-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

boost_histogram-1.4.0-cp312-cp312-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.0-cp311-cp311-win_amd64.whl (737.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

boost_histogram-1.4.0-cp311-cp311-win32.whl (537.7 kB view details)

Uploaded CPython 3.11 Windows x86

boost_histogram-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

boost_histogram-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

boost_histogram-1.4.0-cp311-cp311-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.0-cp310-cp310-win_amd64.whl (736.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

boost_histogram-1.4.0-cp310-cp310-win32.whl (536.8 kB view details)

Uploaded CPython 3.10 Windows x86

boost_histogram-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

boost_histogram-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

boost_histogram-1.4.0-cp310-cp310-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.0-cp39-cp39-win_amd64.whl (828.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-1.4.0-cp39-cp39-win32.whl (537.1 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

boost_histogram-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-1.4.0-cp39-cp39-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.0-cp38-cp38-win_amd64.whl (736.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-1.4.0-cp38-cp38-win32.whl (537.1 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

boost_histogram-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-1.4.0-cp38-cp38-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.0-cp37-cp37m-win_amd64.whl (743.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-1.4.0-cp37-cp37m-win32.whl (543.9 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

boost_histogram-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

boost_histogram-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-1.4.0.tar.gz.

File metadata

  • Download URL: boost_histogram-1.4.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for boost_histogram-1.4.0.tar.gz
Algorithm Hash digest
SHA256 cf9826cfcfe10335096b57a61f6c6569f65f0159259eeb2251c5bf31d859d753
MD5 d45ae22ad7d5794ec348f6202eecb397
BLAKE2b-256 dd9c028fab7b6082e18c5f25ffb45a8536021bddc825ad2f778c1c4bdcd39cc6

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2e64096e4016e71b6a905a2597199db41d1cbc9cd62c9bbfb7f4e3e923b4096c
MD5 1e2b2592faccfc275c3de9431bb62ae9
BLAKE2b-256 4339e9e9573b63b8e23276c22c0175965ddc8afe37557003198f3239e7aa0364

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9fb4bae76c28ca05ca49c8b9c24069935297b3c69f8f4cc1d458643d21c1904a
MD5 47e242fa7d0873438bfeaaabf706d1f3
BLAKE2b-256 a489cb103b2a0c54a6caff0915a3157a4395118922a2a6d4177ff68a62f294ad

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5d98fa88e84e1781e606e6882d3e85852d5c33ab80a92bd703567517b7c2ed0
MD5 753e3da90efb9da4c1f90793162679b8
BLAKE2b-256 0d36be01764edf89fdb48181734c244af279f063763a7eb3fe89e197464f8292

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 38b179698526b10f64d4da3638903dc56496b4d6ba4a9c09fd5556349464c1df
MD5 f0984f97b03b5263360e558767814fbc
BLAKE2b-256 d2265436ee51d8759f51f4d9fa098d599b0119b3ac081be16471eb0c4321feac

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca9c6fa97280379088bf1b4c2f233b6c9dbb9963189b1392fe8d4f9f75eb94bf
MD5 233d741b49ed1bf1c3bf220b5d0843af
BLAKE2b-256 b1837dbe2a25785cbb838e25fd69c12a1357f313d8adafbc827ff4003de588ca

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2849bf71b428df06bc85d479d6efc023f595103b495715a5d2be8fd0caf1c4f
MD5 a007e64355c4fc75601b94c43516cbd9
BLAKE2b-256 8ba6fbadfab9e7b766cc0028859068599758e231c2d5f21e94d80b6ecc2af82c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 21669b786daa99e817aa54c7d19cd0d8bb17311a78efa55fd4b73de710e28c74
MD5 c37c2dbaf89e06a45d36415ce694bb3c
BLAKE2b-256 e0a481269cb1874188e5f938c611411d0683017917d4234fa51b1556f649e7b1

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64cc574977ba914ba60b96db09c4f75fb927b0a78ce1491de55827a1a1d9b045
MD5 2ea688cecd40279a2aee22767879ee98
BLAKE2b-256 b385603f561e44b46be5bc42bf8cff8f6a410e9954e0fd95ad62249b584df0b6

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24b41e2a9364d4665c89432d446207628307568ab037c0005f5055fcf4847146
MD5 a80e0931cab6a4ddf1c0da991841ea9c
BLAKE2b-256 148b15b445008f731bd72e1b5e21cdd96d7f5a143cbd2d494d34d80ea3ad7c8f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 74a5cd6d48365707b1df47ed270c28c4aebdaeb05c0f9dd251ad8042ee078812
MD5 bab784f24300b1b7c22c87032fdf11ca
BLAKE2b-256 ab0f17a1c43f8b244592a54de084f458773a0b159673228f2727be2ada3159bc

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa9a77e84d132304a9d248a57ca9108497e7813c581f6223835ec36d2fdbddcf
MD5 65863607a5fe140f4de2425110eef025
BLAKE2b-256 b10c4ac9c5b71d499d0e86c8cf070c74277bbec3b6606db331ed3036fb63c0db

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d98cfe51d14e49fcf6f168020feff9d26a2539b7789c500bef2f6e649edce1db
MD5 69f905cbc9f1012bac343d039b6e9fed
BLAKE2b-256 467b72f89ac8e931eaed8b0abc0d342f172dd23365906e401887ebee98cbf3f3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d35a8c0566110ed978aacba7e9786bebf86695a9490840ffff156fc0b1710e11
MD5 8c69ee2fa0dff3093f5c3d7cec9cbf59
BLAKE2b-256 46218dd779f871d8fdefd0b697b78a73fdaf0ed77ab6bc3712fc03de07eb4951

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ed3d8baa9f6b1e985387c3557cdab5b59d95dd123df2a9f42c66c05c89d955cf
MD5 e5805551de0cf49a8980dc5cdd43cbf1
BLAKE2b-256 db3874884df1f65b3597a6778ee0f45a2f586a7ae8d4048d403d154c3315f2e4

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b6258389b0a99e30acc24b56cb62e16598228607f64b206b781b08a2764296e
MD5 6caee56f972dac6fd86ad240000ca6c1
BLAKE2b-256 12216d89ef89f3bd4c8a0912e0792561423aa9faffaf5ffb12a32a57fd615d1b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71a0cb58ad09e09d7ec89e7a0e431f67cf8ca6be50156bf90dbe191436e24a6a
MD5 3132385098c04179d21d552617e25696
BLAKE2b-256 e225f8d16be1def93a32f23890680dc3edc839deec0243ab4d6ed69c0bb0a990

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46e4bacc6a63574127daf1fe789a5aae0581a3d4333b32f502b957b530f53e55
MD5 a301f401f5129d63a0899c65f66aaaba
BLAKE2b-256 686eb651cc99a5048d32f96c3f6501135d9f0ed84c10a8f2e454b2cbeed36045

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f4c269e9531115ac7849c2d80c8e704eab0ed036ccab044b7880c69f301d9e92
MD5 c9d7c441c8544bbc483b64d4c6b758ef
BLAKE2b-256 6951e0a6ee374b29e4f95103ae49820d04351aae65946792084af168b5b0676f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4d8770dd50539c29fec34b796393028f87d4491d29fcdd126bb211d82379636d
MD5 4824ff149cc6635079706762dbe68517
BLAKE2b-256 26bb5f6d471a03e2d75d31c41ddd185a4f1e49cf4e1e41df8ac7860f6358cb7b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 029c3a607a871282140444e96d8d10895ac22152ff46f81f33f2abf67a1d30fd
MD5 80f758f3cee889404f641eecb5dc7b85
BLAKE2b-256 c1487ac54de315b898a4adb2a390e26cf2a38014b4716ccc7c8e991944fec650

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ee0871ff9bc205323ad16fd6ee33599308df822b42f0a91e63bc20f155443deb
MD5 d332edacd827d6f451676107a37a15df
BLAKE2b-256 0ccf96b92da45e53aaf93d7d8a805be9b4fed4a2ac2d688a6587fdc717dcbf03

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83779cf3a7c228293de6381d7a88e493f02e986469e1f07bd7c8f204e587570f
MD5 262bb73795a66e9725717c51eec9f586
BLAKE2b-256 24d7f4c99f68afd9476bf645eaf85a8ac42db2939d31a9d092cd79672fc87983

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3a65ad9336c9ea81a910896bd0fbaf32afc40f6791bdcb7f7619f1603a50db6
MD5 eebf2050ed13b5dbdc1660dd8031f78b
BLAKE2b-256 b6958c01a6789a5caff1555eef39f87131d0afd6f000cc471650228861bd538c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 301b52d3f291a89537e53fb311744b16e08b7800d0a1d2ff39df9d970e344443
MD5 c44891a9e74c42ff233297ce02462bda
BLAKE2b-256 cea74d555c4316e5751336626cad90327c0bd865062ea055dc6772fcc87f3d9f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 22adae14e174b0f6aa6594055cb5e89a2e9547131510d3a43a29c1a6765a1a3f
MD5 4abfa6ab47488dad3fba49b2700c7ef6
BLAKE2b-256 1c64e73f868d2f5562199c8bd7c9b3899554c044a75b15a8f9a1beb2deeffe43

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 540323de542cfd5eb2a765eaef1fd9266c56efe73f9683d9a9938c47f75f556e
MD5 5cd45248a25ee690f59c4bfe7a342317
BLAKE2b-256 8b257b02d45f15e9d4d75349c73011ef38f9dd50e72964f146995895705f9767

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a10e818920d834453ad4553b33c4b5acff966604fb931f8ee72cba3105b60ac1
MD5 8f0801a1ace58ce79cf4f32ea074f90b
BLAKE2b-256 144babc42c6ed6edd7a995a756f003e31b432399005a329efd6dd077112ac712

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 761f7abf0b11f76c4e7cb6ede54dfeb569d8a018d15281880481b32a2129e9f3
MD5 55ccce23971f564d1216293bdcd692c4
BLAKE2b-256 c1da9ca77d791ca0fa7ca0432a2e76ef3aada15a63b36bef8f026f0d86858433

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9663c89182c51b3c8329c8fff0a4119ee581161eaf19e17ac0a33cc00046a6c2
MD5 06500f3e864d18f21ab3c77dc05f2fe1
BLAKE2b-256 4209793a882d12b11a87de38c47278f4b2636925a051adc23e4a1d027a35b176

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab2b983ca1dbb3f164c7064cc054dce0183552507f9bb6a95d5d767481656a8b
MD5 59d9bc5b18b0c87ddb9a7caa625b15a7
BLAKE2b-256 557c8eb38d29feb1f60e0492edd4b07019f644b844a85fad448df13965bd385d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2fce85a10a61503431f070f1f8f261f22305e8ada3d05eb5e8f00a817339bfd8
MD5 a449a096854340a486bece87941240f8
BLAKE2b-256 063c010877cb2a6013ea1dc4e7092f6b6fe970c12791fac6331aa455af2c65c1

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0bb1fe7f87fe7f46607ca0e9786ab345e823ca9eaaee797c0a02623ae378c7d5
MD5 8638a99ae49647611f154c346e7a50e3
BLAKE2b-256 9b1b724444d97dbcb3430963cee26a97d1ba00fa1dfd21837bd53d6067991eb4

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 36a8fbf72eb9a9ce4b3ef534ccd290ecb5891e1365204e4a1d4b164b98ebb9c1
MD5 97d2da8c4381eb4f4f90c5997af4bf5b
BLAKE2b-256 81f7be63292b8cd5095d17214ba32ed8e768cc41963a2e4e3e1a98f10dc6a3c6

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 492a8e377c6cd78601cd52c30a3834649ef4b2f92ff495f2b44abbb459be3c20
MD5 9b39acf911ba675c4ae66e5b2c4f456f
BLAKE2b-256 52a6e5a24be4d8c6079aa62e3b37f72d339ef555063cda04f2644e4355cebe6d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 91c009e09bee971c892e72cb4e05ddd0b26df929e67aa387d94b5883fa1e25fe
MD5 95905fe6dc91c04c8fab705bf1d3f97c
BLAKE2b-256 7ee8a0e8ee5a490c06598c1cac8b2f76e309e90e6514632c88bd9b0455c5b46e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a4105c7608b271c29754c39e320f208fb09e44e127fe8dc0d08627781a62001
MD5 0dc87980895d2fa49f090d91460b19e3
BLAKE2b-256 79100a93d7fa1c9f119a9d60179d53c27ec15635a3125fbb2cfd3dab57161239

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d68dd749a0a445ce00bce48d00430b1cf8fc2fd86ce1d62a70005e1d36140ee3
MD5 82a61aeba2520308be72195c250dd41b
BLAKE2b-256 de54019e5aec34f7113c4ff4585ec938084055c5ef008ba2768eff327041bdb8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d860ed89eba5cd769b58afab62b6b1f11c6ee430cc5306a84c65f1b55f2d62e
MD5 dd39f42cc9f78bddf910680ae1fb9ce5
BLAKE2b-256 bd45b32d48717642c4b502da72936ce985cc0d2c17c430e75d096c8fc8ea9cdb

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 574f39c7a4937a5dcebc1ff0d85790ff961b53e5686ef13b5e4715e43bcb47c6
MD5 276a23cbac4b73bdace6a91c9c672284
BLAKE2b-256 7714574d5db6b19f85afda3aa905fa6b1b9d8d4dc13fc2e62a7e895ef5a73ab0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c0a7b46f259c92967cd63abccc15dafec8415f887361127aa3d9cdaa4c38ceb3
MD5 282883b6b939a5a1dda54a7f3ebf3d1d
BLAKE2b-256 f8c7147adb4b3aabc806ee2465a07931eb3ac4fe29efb572fca48c1bceb7b67d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5735bf11868d08ad4fcbc9bb0ad9021a059419b58fa1a6a614b4d315e1c71b02
MD5 90cee2f11d4cf17e4664471154e4c207
BLAKE2b-256 9d8277f93b0d75d1d6e71526f3599e36781bcd4264fb891c3a09183b3a6334b2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c29abb2cd267d66a443b4f80f8553d5407d402663484c92570e3ab0993804ff6
MD5 6fe7b1154d1d4d379ce6d0d81eb22aa4
BLAKE2b-256 3dd2c5d69a41bad3a02e1e24079d18405c4a70de7be077e965b9b2d93791e7a3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63080e50c3dd327543b5a12d834d4868df95fc439c094f67f4d24b6c39ab213b
MD5 4606f7ab06504eab708d531e020617a2
BLAKE2b-256 3fef4836508801334936f9473e4b08e060798f18e894e91e17c81976cc8cfed4

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fded440119fde858f5175629f03a40f96cc79c594f77a4d2e61a9e9d15e8ee34
MD5 12deae0208d3375a1653b134ac13cb9f
BLAKE2b-256 2e65bacc23fda03e94662da0385e876fc628f83d121f772e2e7029ed888d69cc

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d62bcd56b1e6985a21ec4de230ff96c11d2aea1009d83da91f675a174a063f4
MD5 18aef72beade69f77f878ac57ea83f14
BLAKE2b-256 7092d473894131c3b5059e14e373ae6c4af50d890d856136087b3a16dc81e730

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8a29d19df05d612a72b50f458a70442df62ee47188e2730a4d2ddedef4af3158
MD5 b59b2db20967ddfa2bddc02477b0f626
BLAKE2b-256 48223e0d0d90373065e4240d9fa682c9a140afd919845dda072ac66c2976560e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 da95d9d450459080d75a8c2b2616394bffe8003fdc82072f2e4a3d1b99b7b730
MD5 0ecd544ce806e37464c3f54487f35883
BLAKE2b-256 70302cd4a9b98b17752907dbbbd3b255b8ffedce90a16b177a0786d032e4bbc2

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b3522c7b9413f8f9d125924b88775d1946b7a2f46738dd275e7ebca8b1ea8d1d
MD5 33e8a69a63caddb06235544ce988955d
BLAKE2b-256 3a1d02a924e7032e19e251f93216743c0d1cb2b671ea5ccb642ea1434e6d60f3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 845c37fb818fd789e349b3c94e98ec5b3943cd6d78e7fe8cbde8bc0883ef037d
MD5 f139247cf72c05709be07f99a5ec48d6
BLAKE2b-256 899544517b13159123aa48e77a5be5fb0aacf52c145781f5a5ec097f93ea9ed8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e90bf1946734f7aff4668f4e959c5743062960be805fba8081ce61c2fb1ec38
MD5 d7055333d5fa547f132844704c96bf74
BLAKE2b-256 2023975bcfdbdfc03d00ead783c5a220474fe7da62424fd57658bd2e34ac3ba0

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ae5f9865b9bdba2f90656f149731571b483c828ae05c05548e5a88e08fc0e7d
MD5 98e0354e97f40eb831d4c8d56db763b8
BLAKE2b-256 11121f86478a505ede784d7ecd471d11e99fa72fa2b76bc866425af7ef6956a1

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 238c45fcf671d25eac30518fdb9bf19b9849e7f735b71e2586e3a0c5d3687a3f
MD5 5b9a68be94dc2898c830cd92624eb8ab
BLAKE2b-256 6537f4a5df00a5897297bab72219d52caf031a6efc2f5b2d8fdac3cd783a8a0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page