Skip to main content

The Boost::Histogram Python wrapper.

Project description

boost-histogram logo

boost-histogram for Python

Actions Status Documentation Status

PyPI version Conda-Forge PyPI platforms DOI

GitHub Discussion Gitter Scikit-HEP

Python bindings for Boost::Histogram (source), a C++14 library. This is one of the fastest libraries for histogramming, while still providing the power of a full histogram object. See what's new.

Other members of the boost-histogram family include:

  • Hist: The first-party analyst-friendly histogram library that extends boost-histogram with named axes, many new shortcuts including UHI+, plotting shortcuts, and more.
  • UHI: Specification for Histogram library interop, especially for plotting.
  • mplhep: Plotting extension for matplotlib with support for UHI histograms.
  • histoprint: Histogram display library for the command line with support for UHI.
  • dask-histogram: Dask support for boost-histogram.

Usage

Slideshow of features. See expandable text below if the image is not readable.

Text intro (click to expand)
import boost_histogram as bh

# Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(
    bh.axis.Regular(2, 0, 1),
    bh.axis.Regular(4, 0.0, 1.0),
)

# Filling can be done with arrays, one per dimension
hist.fill(
    [0.3, 0.5, 0.2],
    [0.1, 0.4, 0.9],
)

# NumPy array view into histogram counts, no overflow bins
values = hist.values()

# Make a new histogram with just the second axis, summing over the first, and
# rebinning the second into larger bins:
h2 = hist[::sum, :: bh.rebin(2)]

We support the uhi PlottableHistogram protocol, so boost-histogram/Hist histograms can be plotted via any compatible library, such as mplhep.

Cheatsheet

Simplified list of features (click to expand)
  • Many axis types (all support metadata=...)
    • bh.axis.Regular(n, start, stop, ...): Make a regular axis. Options listed below.
      • overflow=False: Turn off overflow bin
      • underflow=False: Turn off underflow bin
      • growth=True: Turn on growing axis, bins added when out-of-range items added
      • circular=True: Turn on wrapping, so that out-of-range values wrap around into the axis
      • transform=bh.axis.transform.Log: Log spacing
      • transform=bh.axis.transform.Sqrt: Square root spacing
      • transform=bh.axis.transform.Pow(v): Power spacing
      • See also the flexible Function transform
    • bh.axis.Integer(start, stop, *, underflow=True, overflow=True, growth=False, circular=False): Special high-speed version of regular for evenly spaced bins of width 1
    • bh.axis.Variable([start, edge1, edge2, ..., stop], *, underflow=True, overflow=True, circular=False): Uneven bin spacing
    • bh.axis.IntCategory([...], *, growth=False): Integer categories
    • bh.axis.StrCategory([...], *, growth=False): String categories
    • bh.axis.Boolean(): A True/False axis
  • Axis features:
    • .index(value): The index at a point (or points) on the axis
    • .value(index): The value for a fractional bin (or bins) in the axis
    • .bin(i): The bin edges (continuous axis) or a bin value (discrete axis)
    • .centers: The N bin centers (if continuous)
    • .edges: The N+1 bin edges (if continuous)
    • .extent: The number of bins (including under/overflow)
    • .metadata: Anything a user wants to store
    • .traits: The options set on the axis
    • .size: The number of bins (not including under/overflow)
    • .widths: The N bin widths
  • Many storage types
    • bh.storage.Double(): Doubles for weighted values (default)
    • bh.storage.Int64(): 64-bit unsigned integers
    • bh.storage.Unlimited(): Starts small, but can go up to unlimited precision ints or doubles.
    • bh.storage.AtomicInt64(): Threadsafe filling, experimental. Does not support growing axis in threads.
    • bh.storage.Weight(): Stores a weight and sum of weights squared.
    • bh.storage.Mean(): Accepts a sample and computes the mean of the samples (profile).
    • bh.storage.WeightedMean(): Accepts a sample and a weight. It computes the weighted mean of the samples.
  • Accumulators
    • bh.accumulator.Sum: High accuracy sum (Neumaier) - used by the sum method when summing a numerical histogram
    • bh.accumulator.WeightedSum: Tracks a weighted sum and variance
    • bh.accumulator.Mean: Running count, mean, and variance (Welfords's incremental algorithm)
    • bh.accumulator.WeightedMean: Tracks a weighted sum, mean, and variance (West's incremental algorithm)
  • Histogram operations
    • h.ndim: The number of dimensions
    • h.size or len(h): The number of bins
    • +: Add two histograms (storages must match types currently)
    • *=: Multiply by a scaler (not all storages) (hist * scalar and scalar * hist supported too)
    • /=: Divide by a scaler (not all storages) (hist / scalar supported too)
    • .kind: Either bh.Kind.COUNT or bh.Kind.MEAN, depending on storage
    • .storage_type: Fetch the histogram storage type
    • .sum(flow=False): The total count of all bins
    • .project(ax1, ax2, ...): Project down to listed axis (numbers). Can also reorder axes.
    • .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow bins)
    • .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)
    • .values(flow=False): Get a view on the values (counts or means, depending on storage)
    • .variances(flow=False): Get the variances if available
    • .counts(flow=False): Get the effective counts for all storage types
    • .reset(): Set counters to 0 (growing axis remain the same size)
    • .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)
    • .copy(deep=False): Make a copy of a histogram
    • .axes: Get the axes as a tuple-like (all properties of axes are available too)
      • .axes[0]: Get the 0th axis
      • .axes.edges: The lower values as a broadcasting-ready array
      • .axes.centers: The centers of the bins broadcasting-ready array
      • .axes.widths: The bin widths as a broadcasting-ready array
      • .axes.metadata: A tuple of the axes metadata
      • .axes.size: A tuple of the axes sizes (size without flow)
      • .axes.extent: A tuple of the axes extents (size with flow)
      • .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)
      • .axes.index(*args): Returns the bin index at a value for each axis
      • .axes.value(*args): Returns the bin value at an index for each axis
  • Indexing - Supports UHI Indexing
    • Bin content access / setting
      • v = h[b]: Access bin content by index number
      • v = h[{0:b}]: All actions can be represented by axis:item dictionary instead of by position (mostly useful for slicing)
    • Slicing to get histogram or set array of values
      • h2 = h[a:b]: Access a slice of a histogram, cut portions go to flow bins if present
      • h2 = h[:, ...]: Using : and ... supported just like NumPy
      • h2 = h[::sum]: Third item in slice is the "action"
      • h[...] = array: Set the bin contents, either include or omit flow bins
    • Special accessors
      • bh.loc(v): Supply value in axis coordinates instead of bin number
      • bh.underflow: The underflow bin (use empty beginning on slice for slicing instead)
      • bh.overflow: The overflow bin (use empty end on slice for slicing instead)
    • Special actions (third item in slice)
      • sum: Remove axes via projection; if limits are given, use those
      • bh.rebin(n): Rebin an axis
  • NumPy compatibility
    • bh.numpy provides faster drop in replacements for NumPy histogram functions
    • Histograms follow the buffer interface, and provide .view()
    • Histograms can be converted to NumPy style output tuple with .to_numpy()
  • Details
    • All objects support copy/deepcopy/pickle
    • Fully statically typed, tested with MyPy.

Installation

You can install this library from PyPI with pip:

python3 -m pip install boost-histogram

All the normal best-practices for Python apply; Pip should not be very old (Pip 9 is very old), you should be in a virtual environment, etc. Python 3.7+ is required; for older versions of Python (3.5 and 2.7), 0.13 will be installed instead, which is API equivalent to 1.0, but will not be gaining new features. 1.3.x was the last series to support Python 3.6.

Binaries available:

The easiest way to get boost-histogram is to use a binary wheel, which happens when you run the above command on a supported platform. Wheels are produced using cibuildwheel; all common platforms have wheels provided in boost-histogram:

System Arch Python versions PyPy versions
ManyLinux2014 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 3.7, 3.8, 3.9, 3.10
ManyLinux2014 ARM64 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 3.7, 3.8, 3.9, 3.10
MuslLinux_1_1 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12
macOS 10.9+ 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 3.7, 3.8, 3.9, 3.10
macOS Universal2 Arm64 3.8, 3.9, 3.10, 3.11, 3.12
Windows 32 & 64-bit 3.7, 3.8, 3.9, 3.10, 3.11, 3.12
Windows 64-bit 3.7, 3.8, 3.9, 3.10
  • manylinux2014: Requires pip 19.3.
  • ARM on Linux is supported. PowerPC or IBM-Z available on request.
  • macOS Universal2 wheels for Apple Silicon and Intel provided for Python 3.8+ (requires Pip 21.0.1 or newer).

If you are on a Linux system that is not part of the "many" in manylinux or musl in musllinux, such as ClearLinux, building from source is usually fine, since the compilers on those systems are often quite new. It will just take longer to install when it is using the sdist instead of a wheel. All dependencies are header-only and included.

Conda-Forge

The boost-histogram package is available on conda-forge, as well. All supported variants are available.

conda install -c conda-forge boost-histogram

Source builds

For a source build, for example from an "SDist" package, the only requirements are a C++14 compatible compiler. The compiler requirements are dictated by Boost.Histogram's C++ requirements: gcc >= 5.5, clang >= 3.8, or msvc >= 14.1. You should have a version of pip less than 2-3 years old (10+).

Boost is not required or needed (this only depends on included header-only dependencies). You can install directly from GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

Developing

See CONTRIBUTING.md for details on how to set up a development environment.

Contributors

We would like to acknowledge the contributors that made this project possible (emoji key):


Henry Schreiner

🚧 💻 📖

Hans Dembinski

🚧 💻

N!no

⚠️ 📖

Jim Pivarski

🤔

Nicholas Smith

🐛

physicscitizen

🐛

Chanchal Kumar Maji

📖

Doug Davis

🐛

Pierre Grimaud

📖

Beojan Stanislaus

🐛

Popinaodude

🐛

Congqiao Li

🐛

alexander-held

🐛

Chris Burr

📖

Konstantin Gizdov

📦 🐛

Kyle Cranmer

📖

Aman Goel

📖 💻

Jay Gohil

📖

This project follows the all-contributors specification.

Talks and other documentation/tutorial sources

The official documentation is here, and includes a quickstart.


Acknowledgements

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boost_histogram-1.4.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

boost_histogram-1.4.1-pp310-pypy310_pp73-win_amd64.whl (738.4 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.1-pp39-pypy39_pp73-win_amd64.whl (738.3 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.1-pp38-pypy38_pp73-win_amd64.whl (741.4 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.1-pp37-pypy37_pp73-win_amd64.whl (741.1 kB view details)

Uploaded PyPy Windows x86-64

boost_histogram-1.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

boost_histogram-1.4.1-cp312-cp312-win_amd64.whl (746.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

boost_histogram-1.4.1-cp312-cp312-win32.whl (542.6 kB view details)

Uploaded CPython 3.12 Windows x86

boost_histogram-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

boost_histogram-1.4.1-cp312-cp312-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.1-cp311-cp311-win_amd64.whl (738.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

boost_histogram-1.4.1-cp311-cp311-win32.whl (539.0 kB view details)

Uploaded CPython 3.11 Windows x86

boost_histogram-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

boost_histogram-1.4.1-cp311-cp311-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.1-cp310-cp310-win_amd64.whl (737.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

boost_histogram-1.4.1-cp310-cp310-win32.whl (538.2 kB view details)

Uploaded CPython 3.10 Windows x86

boost_histogram-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

boost_histogram-1.4.1-cp310-cp310-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.1-cp39-cp39-win_amd64.whl (827.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

boost_histogram-1.4.1-cp39-cp39-win32.whl (538.0 kB view details)

Uploaded CPython 3.9 Windows x86

boost_histogram-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

boost_histogram-1.4.1-cp39-cp39-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.1-cp38-cp38-win_amd64.whl (737.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

boost_histogram-1.4.1-cp38-cp38-win32.whl (537.7 kB view details)

Uploaded CPython 3.8 Windows x86

boost_histogram-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

boost_histogram-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

boost_histogram-1.4.1-cp38-cp38-macosx_10_9_universal2.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

boost_histogram-1.4.1-cp37-cp37m-win_amd64.whl (744.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

boost_histogram-1.4.1-cp37-cp37m-win32.whl (544.6 kB view details)

Uploaded CPython 3.7m Windows x86

boost_histogram-1.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

boost_histogram-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

boost_histogram-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file boost_histogram-1.4.1.tar.gz.

File metadata

  • Download URL: boost_histogram-1.4.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for boost_histogram-1.4.1.tar.gz
Algorithm Hash digest
SHA256 97146f735f467d506976a047f3f237ce59840a952fd231f5f431f897fb006cdd
MD5 911b89959788b8f18a456d376d51b0dc
BLAKE2b-256 6068a901fa3287fe62bde47e3936081286b6588b55f89bbcb9984be519414551

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 eac2a39d89bfa8d2439f2075ee2cc9cb699c40619fd7397b0f90d7bf9c8be340
MD5 544ba32ee8bdc752b72f526c05cc97c2
BLAKE2b-256 b1a10dd695854b9d379114633321cf2cd6428aa362e631bba9fea91cf8e35588

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b58966f6548497b7da6b8ceb4fe2cd18f9c0efd75ec743885bb49b352bac175
MD5 0ede39a091334bf9d3bac0b0cf82fc3b
BLAKE2b-256 ca575701bd4017ddd16d0411ff280ab67e5a1441a94f7f634347572a45da864b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce65b200d6b932e1efe0d66bbf7f734c89b1170da4e3d6157023c5f668305606
MD5 0fc52d1892059558e7d2ece3003cd0b0
BLAKE2b-256 ad8bdde415e597e915b82edf2efa1f7a099e215f9cc9c46cadf637e80da96c65

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4143f67a93190ba8166427e76abdce8a87f5a722add680e2ca05d34b6070e8fb
MD5 130e6943874842f354df518735524096
BLAKE2b-256 c459c063a38a5b550df31cffd0d8f7d26d5c61460444876c2b44d96ff7edf8e1

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb05819b550f815603feea87ef086db8415f4a6e21c93250d9b1bd3341662aa3
MD5 2712cb3d54a9f8dd945b0404ff907648
BLAKE2b-256 56a3691168a97dafcfcf4f5e429f95a445e3bd10e4036e2f616192831840ec0e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 281de6d46ace4914aea7ce746f9fc111d08f90bf1ed5a37b448780ddb4b46023
MD5 2faa0875d64d3d0aea1cf4a1935fe6cb
BLAKE2b-256 714f8e9a6263c46a63d43ab851fe245b731813d5e2dec2e000ff4c0c857fefef

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 158f4abea2f29350951418d7cf91772dc9b7d3586357d13378cfca3bfb2f9484
MD5 0be552b6790a9c4bfea6b97337b04996
BLAKE2b-256 93e403cc6d6acf2ac11cb617ff6208e9f2e076b8f197879ef924df51214b7470

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92f08b973023b9d8206bc9e0101768b94425166a64101bdee5350163266879f0
MD5 b7a4acc7c69245ad11b7c13096d1c649
BLAKE2b-256 98909a1ed9ab189170fa9a4cc7fffa5d5b2bcdfbcf9f11736b470f6adcb29341

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da7df0f73cbb838d6aeb75a0e0a3773cce029bda8c253f69e2bd1d5d18522ac8
MD5 18355b284a80dcc1d79aa8c204a90818
BLAKE2b-256 882e96f9620b5e54b8481816d5e48e836e71df89fa15e1d91da9336cd81170ae

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b902179864f5e5e2746181d3bd9590a5edde4821bd80a07708a44251b6e31245
MD5 fcea9b464566f4d1bfbe1938b0444d9b
BLAKE2b-256 0f0c0d7dd9ed37027432aa84b5ad0b0505ad02510b9b0221357c218ac9b2e18d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9d63ed5f0b0cc20fb8d502725464b3fff2420c8db7dda1f801176ad8c7e556c
MD5 583d5eb72dc3ae406dac1d8ccf69c43f
BLAKE2b-256 a64869870a9ebd3d38e4078759291194622a3a9c907c649f103223a04ac98558

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12539aa311b9ad1d89b6e631a5c8a6cd54411ae30bb330a892efc07c9e6be253
MD5 ab857e690d4446332c8ddaaae108e970
BLAKE2b-256 14cf6771eda9e2392ad9447ea21748b8d433a126eea97d6f6d64209f2107677c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bee76b001865ea5f80d7bba60876265d36fb4bf23be35573541bcdd50ba7bb74
MD5 904105e64f0ecf339df4c177c1823e3e
BLAKE2b-256 8a6a698d95f5d769dcb687a93cc37c34379fb2be3cb9a05641b0a9109747219e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9602c52e50168ebe6f445c335133bb066905a8cf323991a4b6fa9b42c45eb77b
MD5 4d890a4e9d3e0ba207f03f401c02d082
BLAKE2b-256 ad1afac191ff14a4412954d3a2b32a74483097362e5f6c21cac6150ceb0fca4e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5d4ba99bc4c9f6a5950b4110da4737382bd188562986b2757e4c4b4ab289cf84
MD5 d197170515a7127140c22cbbdaecb06e
BLAKE2b-256 3a330c1b62ba2bfc869d4b1ac9f3c738caa5c2a5d51c89d14d2cdafb767aeaa3

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f408e85a36dce40f39074fee0f3df70f0baec4624224c7958ff0ace027f82aff
MD5 365dd0e8c5042623740fb8dbee85ae8a
BLAKE2b-256 6b036b2411d3cc40833a1292534878c195e7fad8d37c908a7ffe94b2e4f5851b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8fa7a9e5fd6ba16a8acb185a2c441d7e777db7643fde9e988f50dfbff9d92cbc
MD5 4f814b54f5cddda70d978ff553120333
BLAKE2b-256 27379062af23ae5995efc83b2e3c97fd964b7fcb0b598ec3361e32f91495d89a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 89fcb3386295f9041e6fa597d704c4d83076e8c26404a5f5dbe19d8f19c9f4f5
MD5 647d18de5553141ba0bf1ba68c7ae796
BLAKE2b-256 951c54ec18db9c654e26aff3c95eba9a019df399496bc33d33909159fb8c1200

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4439bdfca517753f1001f535471fe67ee6e8229cfe87f9b03a911027841274ec
MD5 1dc8013406eb7f01b3e9120cfad9a563
BLAKE2b-256 5a75e4d7019c5910e3e6c04b5cdebcd60e46a9ae35af5cbae67969096f9f4050

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bd1cb44a678e7e33f85721508d1ac1193137fc2beb61148e4d316bd273e5bb9e
MD5 c19dc996015489a30ef93b69305fa8cc
BLAKE2b-256 105299cef638b5f104fb827eb024e45d209f622b80aca317fb74b676c0e03ab9

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 90ad2f26fc2aa2b05385e0f6c82fe2992d69e5e0aa164161eb1415073066e366
MD5 a3710abe8bd0f58beb186b109e0f37f5
BLAKE2b-256 83959d6653b06c9688e4d49c852accda68a48419c20901fcc58b6c7cf9f0c62f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 256a084993bbea4b63e7fcc4e911fe34afd3d49ad068341ea4e2663e1ab12430
MD5 a566bd03bc6a70ffac496e6257ce6d27
BLAKE2b-256 acc790d2fa963adab6ae8729c3832f24354f986ce5c0d27b697ad98b5f844bbf

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea98f717e7cca911e23a4dbbcf00ba519c07e7481f3fc33622144547b3637157
MD5 b383dff2d31e8b685b3b9bad1a23f584
BLAKE2b-256 6029306d129e019900698c30fda961fad8dd33339b67fddebd4fc1aa72e076f1

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 38abf81da5cffc46b69b17cf34c0f8f69e95441b34550b486ebd46e1c443d2fb
MD5 939e0a9fd35ebcc630b7065c5da1de66
BLAKE2b-256 be03319c49ca719ff6cd270705b06962d2504b94e89b38b23deb5014ad2ca698

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e40f68095d6147daee54fcd97718437422be60f86653ca80fa8763bcd8f0c6a7
MD5 8123d04f3f595ce1bc9636cac8dbb54f
BLAKE2b-256 842926e82ad990248d5ac05945726b57fda61ca58cfeffd8949d7336cde63f86

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2f4d315cfaad4ca4725ee49aee5059f0d7ab0b4855590b64dbe6bec5ccd751a9
MD5 3ae1a58a8925f1490da0e55c7f72861f
BLAKE2b-256 55f46d15b0e70d76faa666c5bbbb6c63763375dda2f58858a1f625969ed8fc0d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f3751c6c8ebd13c4a15bd9efe188f82b89cd2204c8b82cd8d5fae07366a52d01
MD5 24c37476553e7c93d3387cf8efeeb470
BLAKE2b-256 84f4ab774339a9e7168b3c33898a11676924b27388cfae0aa934588c6f1e12d8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2dc566bf81d4ed865a0d05b05d2e03ef04939a65d3bcf7c5ff703d736046b185
MD5 6a9b3feb5a6b45a3e4088396cb18f52b
BLAKE2b-256 ac15ed9ea260933825038162c8656955539db18717e673e1128384db48142c6a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1aa4efda18e94e31fc75021b63e4d57b74d9c5850105609eeed1d57d865aaca
MD5 565ba52a2320f311caf2b11e296a0e49
BLAKE2b-256 79c6647072fd1b1d94d7711771bdde26a46e7acd95ebebfb182b841ce502716f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0ab5019b54eab60752dbff08da066e0c061936bf2ac6c2326ffc404087774fae
MD5 bd1178bc76047b107136ea4c8e4675e2
BLAKE2b-256 aeba39e9631c89412f78a4145fde7ec089e106a3fb1cc6d9ab7c9380ce5f5972

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9eba5978b2fe1e7de25ea61bacbcd8d8d058df3e918a0fcdafb766b1680fc6bf
MD5 64957b72568012936f4dfa31399ae0a4
BLAKE2b-256 3d1a40f56dc4cff65e1a1cb85ce36b607b9ef84bf569decfbf91a2ac76ad0e50

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8eb06134a663dd18e0fd398ecfc9012e1ec50c66046d95519ab7390a066a5b4e
MD5 3b686a6c2aa52b0098166410a86a5617
BLAKE2b-256 ad792777a0706096992b25efb30860f289110fc592268450a0d2ba494344cd0c

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8142a1ea9a18fa896a1a945dfbf30116aef3475b816f40dac8bc3dc2eca34841
MD5 e44acf81d50d0d74c379179fac0b3f11
BLAKE2b-256 bf261cf671bd1f7746b9c1736537cfeb0881d0f84b7a41d4384aac593a9d3549

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca41241f59945ae096617e1b81c9a20e8eb4bd7001253a7b267621c936ea2d6f
MD5 89d4d4c94af4809b13793d0d20052c3f
BLAKE2b-256 8388d50b804bee3fd7acf79dd0d08aa7b5ab326d275e51952cafacf13458b8da

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4967da5cf146721a4fa54f18d3d75df498287a1b6516cd4204a23e836069b16b
MD5 7f900c196a08c7480ac8a60a129d1fbc
BLAKE2b-256 b699ea24e1e5b405ba58818746cec2c8436a55c35dac1a319094036691ab241b

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 952f165e5b4a0f6656d763260d4624d8e93cf2bc8718f9f4578a47cad1fbb7c0
MD5 9bad7aa19a78bc35ce5bd9f01924410f
BLAKE2b-256 f9ea0b8e812ac7ba2318828d57f865a23536cc57e4946c37459fb98221c1d4a7

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 edc9fbcae008d5b0d09b128fe7a33babb37cde2fa508199e04805ff1cda4f7b0
MD5 8d2cbf93762a412810704d91161debf3
BLAKE2b-256 dcc4cfd86952096fe303e9c05c260d5a2f43a668bd04fa1c9e4b85668315db32

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f4f97bf113957a8f8b12c18284b8c6c0eb5ce217d483dae78e062bc10af9c05c
MD5 ed5462a5ac98dbe054fd4de2ce1ab931
BLAKE2b-256 eab5871ea04417e7d3a515409369cf99250e0d104afa7aa32bd75ffd5244a89f

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1fe2314ffd1ce8f7f4217ed384c0c3eac8960e3ba2f8f7a4e169fca635e5f52a
MD5 9afc10d95619e3909821a1249a45304d
BLAKE2b-256 0caa3f23f5c243143708d1992b545b1b426897773a206b8a7e380f650bdeea79

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 438af8c4160b35d9bdb1af6848598e9077f3fe629db79d0ef7a738b9de2fd7d1
MD5 7e16f2f423d40f7d5dbeb5ad7cdfdba4
BLAKE2b-256 597eaa60cbd295bd7376deb54c8c6d071f0980ce89964bc24b9fe7b4a751a64d

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1bdb3f82eba880447f9abd676176022febbce2435702db2b6d837c8c0679dfbc
MD5 0001566033ce1e1caa108cf1b4514710
BLAKE2b-256 27125aaa9e53e6a258774d5ce460cdc45a4bbf63c66a02a6639b13e51f9aac5e

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 63e1295492cbf1953e334a43c2e787ca9e2c3213286c51a3bd04b4a3372a06d4
MD5 496de078ab83236ff23d824cb95dbb74
BLAKE2b-256 01e0ea437630329e208246eceb33530c93e3152b9ea1b832e16f2aeb4901d260

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3d151b5790b40d5866bd420c6495775e83dc589a34bf9662914405ee359ac0ee
MD5 a758dc57ff1c1a188d253b49e2591674
BLAKE2b-256 4d56fdbdefa839a3e2d259be5a161c6a968eb06bb8ef97c3e70791547b48be71

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dc4e44b99f84c7fb7917d1b83511f53f2de46385778a46c930a67e12d5de6cef
MD5 54fc9ebb3edd262a45fd57209ef31545
BLAKE2b-256 29c0f35d276915be91bfe1e19d2988e183c60917940889f88f87bcc97f8922a8

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6cecea7d1a4a2e0c7a5ed0cd5587c51b19fa4af0662a14407d4b38b7c0777f0a
MD5 6ebe2c3ac6c091d95d097922216d7f5e
BLAKE2b-256 7b373b8efc33eaca4a9cda58636d71beb14f583d4b8ac082601126e67c53779a

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb0039bada151eddd91023951db719f924e08bba9271a0b6db7de4502727bbca
MD5 3afeac3e92a7a08de9978dfced670e13
BLAKE2b-256 8212540aa9db7b5ae0fd9a7e322bb447d8fbdeb39b5fc1f1549ecaf45cdb1f37

See more details on using hashes here.

File details

Details for the file boost_histogram-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for boost_histogram-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a70a06d94a95a7f59dbe2c7bac2d9ee8514cf34bdbe149ca82e0cb111744ccf5
MD5 80746c5db73aa326c43da7e3199bce5c
BLAKE2b-256 e884eecb2587a0a4b137052fbf5a158d379f873f40e5915b6fdbff94a954cbb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page