Skip to main content

Fast NumPy array functions written in Cython

Project description

Introduction

Bottlechest is a fork of bottleneck (https://github.com/kwgoodman/bottleneck), specialized for use in Orange (https://github.com/biolab/orange3).

Moving window functions, several other functions and all optimization of 3d arrays are removed to reduce the size of the library. New functions are added as needed.

NumPy/SciPy

median, nanmedian, rankdata, ss, nansum, nanmin, nanmax, nanmean, nanstd, nanargmin, nanargmax

Functions

nanrankdata, nanvar, replace, nn, anynan, allnan, nanequal

For other documentation, including a simple example and comprehensive set of benchmarks, refer to the original project.

License

Bottlechest is distributed under a Simplified BSD license. Parts of Bottleneck, NumPy, Scipy, numpydoc and bottleneck, all of which have BSD licenses, are included in Bottlechest. See the LICENSE file, which is distributed with Bottlechest, for details.

Install

Requirements:

Bottlechest

Python 2.6, 2.7, 3.2; NumPy 1.8

Unit tests

nose

Compile

gcc or MinGW

Optional

SciPy 0.8, 0.9, 0.10 (portions of benchmark)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bottlechest-0.7.1.tar.gz (4.3 MB view details)

Uploaded Source

Built Distributions

Bottlechest-0.7.1-cp35-none-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.5 Windows x86-64

Bottlechest-0.7.1-cp35-none-win32.whl (1.3 MB view details)

Uploaded CPython 3.5 Windows x86

Bottlechest-0.7.1-cp35-cp35m-macosx_10_11_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

Bottlechest-0.7.1-cp35-cp35m-macosx_10_6_intel.whl (4.7 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

Bottlechest-0.7.1-cp34-none-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.4 Windows x86-64

Bottlechest-0.7.1-cp34-none-win32.whl (1.4 MB view details)

Uploaded CPython 3.4 Windows x86

Bottlechest-0.7.1-cp34-cp34m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.4m macOS 10.9+ x86-64

Bottlechest-0.7.1-cp34-cp34m-macosx_10_6_intel.whl (4.7 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel

File details

Details for the file Bottlechest-0.7.1.tar.gz.

File metadata

  • Download URL: Bottlechest-0.7.1.tar.gz
  • Upload date:
  • Size: 4.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for Bottlechest-0.7.1.tar.gz
Algorithm Hash digest
SHA256 7e9a4fd8ad0f28e599463e76805054cc41c79c19faae92c528227b88e97a012c
MD5 272a8d9e65ee6e8b072d5da5656337e8
BLAKE2b-256 30fc002a5764c44f394accef81d352d438d3610df965eaf716905efb432dba40

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 1fe9f86de359cad86c4703ca0e833022d0de26b2922a9391c564e934829718ef
MD5 c6d5be34f78346b5c2215d475a89f3c6
BLAKE2b-256 0c9fe61de4bf9751b871a7ec1bbe9f49acc903d3457b68b5c205528c7f52546b

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp35-none-win32.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 c49abc80213d909b97b04f0364b4c3e32c1b7275b0c5f10a89f733c0e7f53b20
MD5 dffcfef0fbeaff9fa3981ff88e4320be
BLAKE2b-256 eaf78dc9a47a340d056cd13b329eb25709fefc9de443a0fafe878396470c027d

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 c86cace23cf9d5d0799caa851b5d6c207306bd3a5ce01998fed6517b4935f37b
MD5 923b63861f650152596f80c10d88742e
BLAKE2b-256 4c7ddcdd987134e4944f2ae84bb576550287d07d04d9e42585b33346e3cef5bb

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 0b863f3657c704b215fcddbe2d637b7e20fe2896a82a99087e5a93789c1085a4
MD5 1b44b38e8c3358b604f4d89162166b91
BLAKE2b-256 21469cf090f0e2e82d2c167efad43713e1e6e9279af33a2f387e9ad9994684c4

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 c64aeb858653105c7bf0ed5c93ae884d47869fa412557bdb72df806039755d95
MD5 cc72e83af870d9ff9694b6d979e8fe32
BLAKE2b-256 dda91c68357843623d97f8abc636438a784c07f806cf7ce3b56a2ae1a60af7a8

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 2c56235c6b53b9d95b1b014d9eeb588b3bdad5a7cc54993e42501f7f2db6f638
MD5 57cd3ddead71d1e696ae721bd9e0aa02
BLAKE2b-256 2f99e7a8a158a1382e19c94413387ee9bc8ea5fe177b94906e4e5ca9cbf4a981

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp34-cp34m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp34-cp34m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8ae42269024235d2370a3ec897fe97e566a210b148ba01c856987dda3fef3f4
MD5 0f076458a81d99b76d3453941d8c7765
BLAKE2b-256 39fddb0980ce641ce24fb5f9e094e30a457a61dee5725f4a2111851044adc1c0

See more details on using hashes here.

File details

Details for the file Bottlechest-0.7.1-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for Bottlechest-0.7.1-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 ccd58dd3e5f3fbb70bc8def12d59b93b326d4e871f623c0ee32302ac25d6f0fc
MD5 9fddf99af342154d38fa178e33f3b221
BLAKE2b-256 ab42b2228464053021d4996822bc9e41689f6d77d9fac78ffa7eafd10690adf3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page