Skip to main content

BrowserGym: a gym environment for web task automation in the Chromium browser

Project description

BrowserGym

[Setup][Usage][Demo]

This package provides browsergym, a gym environment for web task automation in the Chromium browser.

https://github.com/ServiceNow/BrowserGym/assets/26232819/e0bfc788-cc8e-44f1-b8c3-0d1114108b85

Example of a GPT4-V agent executing openended tasks (top row, chat interactive), as well as WebArena and WorkArena tasks (bottom row)

BrowserGym includes the following benchmarks by default:

Designing new web benchmarks with BrowserGym is easy, and simply requires to inherit the AbstractBrowserTask class.

Setup

To install browsergym, you can either install one of the browsergym-miniwob, browsergym-webarena and browsergym-workarena packages, or you can simply install browsergym which includes all of these by default.

pip install browsergym

Then, a required step is to setup playwright by running

playwright install

Finally, each benchmark comes with its its own specific setup that requires to follow additional steps.

Usage

Open-ended task example

Boilerplate code to run an agent on an interactive, openended task:

import gymnasium as gym
import browsergym.core  # register the openended task as a gym environment

env = gym.make(
    "browsergym/openended", start_url="https://www.google.com/", wait_for_user_message=True
)
obs, info = env.reset()
done = False
while not done:
    action = ...  # implement your agent here
    obs, reward, terminated, truncated, info = env.step(action)

MiniWoB++ task example

Boilerplate code to run an agent on a miniwob task:

import gymnasium as gym
import browsergym.miniwob  # register miniwob tasks as gym environments

env = gym.make("browsergym/miniwob.choose-list")
obs, info = env.reset()
done = False
while not done:
    action = ...  # implement your agent here
    obs, reward, terminated, truncated, info = env.step(action)

List of all the available MiniWoB++ environments

env_ids = [id for id in gym.envs.registry.keys() if id.startswith("browsergym/miniwob")]
print("\n".join(env_ids))

WebArena task example

Boilerplate code to run an agent on a webarena task:

import gymnasium as gym
import browsergym.webarena  # register webarena tasks as gym environments

env = gym.make("browsergym/webarena.310")
obs, info = env.reset()
done = False
while not done:
    action = ...  # implement your agent here
    obs, reward, terminated, truncated, info = env.step(action)

List of all the available WebArena environments

env_ids = [id for id in gym.envs.registry.keys() if id.startswith("browsergym/webarena")]
print("\n".join(env_ids))

WorkArena task example

Boilerplate code to run an agent on a workarena task:

import gymnasium as gym
import browsergym.workarena  # register workarena tasks as gym environments

env = gym.make("browsergym/workarena.servicenow.order-ipad-pro")
obs, info = env.reset()
done = False
while not done:
    action = ...  # implement your agent here
    obs, reward, terminated, truncated, info = env.step(action)

List of all the available WorkArena environments

env_ids = [id for id in gym.envs.registry.keys() if id.startswith("browsergym/workarena")]
print("\n".join(env_ids))

Demo

If you want to experiment with an agent in BrowserGym, follow these steps:

cd ui_assist
conda env create -f environment.yml; conda activate ui-assist
# or simply use `pip install -r requirements.txt`
playwright install

Optional: Set your OPENAI_API_KEY if you want to use a GPT agent.

Launch the demo on the open web:

python run_demo.py --task_name openended --start_url www.google.com

You can customize your experience by changing the model_name to your preferred LLM, toggling Chain-of-thought with use_thinking, adding screenshots for your VLMs with use_screenshot, and much more!

Citing This Work

Please use the following BibTeX to cite our work:

@misc{workarena2024,
      title={WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?}, 
      author={Alexandre Drouin and Maxime Gasse and Massimo Caccia and Issam H. Laradji and Manuel Del Verme and Tom Marty and Léo Boisvert and Megh Thakkar and Quentin Cappart and David Vazquez and Nicolas Chapados and Alexandre Lacoste},
      year={2024},
      eprint={2403.07718},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

browsergym-0.1.0rc3.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

browsergym-0.1.0rc3-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file browsergym-0.1.0rc3.tar.gz.

File metadata

  • Download URL: browsergym-0.1.0rc3.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for browsergym-0.1.0rc3.tar.gz
Algorithm Hash digest
SHA256 bd81af34883126b1582bb5666bdc5295598bb35f842607598aab2bef75091cd9
MD5 133a2156796d7492cd257ff224b86b38
BLAKE2b-256 7c21e8c12dfc274b0d077cfa24bd173c6f968841146a7e0d5603fd1053324459

See more details on using hashes here.

File details

Details for the file browsergym-0.1.0rc3-py3-none-any.whl.

File metadata

File hashes

Hashes for browsergym-0.1.0rc3-py3-none-any.whl
Algorithm Hash digest
SHA256 a85e3020d0d085096e7cebb605054e5cde261458b9f17c7e7074a0531ef7551c
MD5 7625e5b2f372e1f2e2ffe16d0a27e10e
BLAKE2b-256 1d241ef3c9e7c7671a956b650b76ad4498fcc330668dee365feef6572d33c761

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page