Skip to main content

Efficiently cache calls to functions

Project description

cacholote

Efficiently cache calls to functions

Quick Start

>>> import cacholote
>>> cacholote.config.set(cache_db_urlpath="sqlite://")
<cacholote.config.set ...

>>> @cacholote.cacheable
... def now():
...     import datetime
...     return datetime.datetime.now()

>>> now() == now()
True

>>> with cacholote.config.set(use_cache=False):
...     now() == now()
False

Cache files

>>> import cacholote

>>> import tempfile
>>> tmpdir = tempfile.TemporaryDirectory().name
>>> cacholote.config.set(
...     cache_db_urlpath="sqlite://",
...     cache_files_urlpath=tmpdir,
... )
<cacholote.config.set ...

>>> cached_open = cacholote.cacheable(open)
>>> cached_file = cached_open("README.md")
>>> cached_file.name.startswith(tmpdir)
True

>>> import filecmp
>>> filecmp.cmp("README.md", cached_file.name)
True

Cache Xarray objects

>>> import cacholote

>>> import pytest
>>> xr = pytest.importorskip("xarray")

>>> import tempfile
>>> tmpdir = tempfile.TemporaryDirectory().name
>>> cacholote.config.set(
...     cache_db_urlpath="sqlite://",
...     cache_files_urlpath=tmpdir,
... )
<cacholote.config.set ...

>>> @cacholote.cacheable
... def dataset_from_dict(ds_dict):
...     return xr.Dataset(ds_dict)

>>> ds = dataset_from_dict({"foo": 0})
>>> ds
<xarray.Dataset> Size: 8B
Dimensions:  ()
Data variables:
    foo      int64 ...

>>> ds.encoding["source"].startswith(tmpdir)
True

Configuration

Configuration settings can be accessed using cacholote.config.get() and modified using cacholote.config.set(**kwargs). It is possible to use cacholote.config.set either as a context manager, or to configure global settings. See help(cacholote.config.set).

Defaults are controlled by environment variables and dotenv files. See help(cacholote.config.reset).

Workflow for developers/contributors

For best experience create a new conda environment (e.g. DEVELOP) with Python 3.11:

conda create -n DEVELOP -c conda-forge python=3.11
conda activate DEVELOP

Before pushing to GitHub, run the following commands:

  1. Update conda environment: make conda-env-update
  2. Install this package: pip install -e .
  3. Sync with the latest template (optional): make template-update
  4. Run quality assurance checks: make qa
  5. Run tests: make unit-tests
  6. Run the static type checker: make type-check
  7. Build the documentation (see Sphinx tutorial): make docs-build

Instructions for database updating

In case of database structure upgrade, developers must follow these steps:

  1. Update the new database structure modifying /cacholote/database.py, using SQLAlchemy ORM technologies
  2. Execute from the cacholote work folder:
    alembic revision -m "message about the db modification"
    
  3. The last command will create a new python file inside /alembic/versions. Fill the upgrade function with the operations that must be executed to migrate the database from the old structure to the new one. Keep in mind both DDL (structure modification) and DML (data modification) instructions. For reference, use https://alembic.sqlalchemy.org/en/latest/ops.html#ops. Similarly, do the same with the downgrade function.
  4. Commit and push the modifications and the new file.

For details about the alembic migration tool, see the Alembic tutorial.

License

Copyright 2019, B-Open Solutions srl.
Copyright 2022, European Union.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cacholote-1.3.0.tar.gz (51.6 kB view details)

Uploaded Source

Built Distribution

cacholote-1.3.0-py3-none-any.whl (36.2 kB view details)

Uploaded Python 3

File details

Details for the file cacholote-1.3.0.tar.gz.

File metadata

  • Download URL: cacholote-1.3.0.tar.gz
  • Upload date:
  • Size: 51.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for cacholote-1.3.0.tar.gz
Algorithm Hash digest
SHA256 8ad1744dc9bd0d24bc06ea5ee0b2c728152616f4dfd63e5bc94bf02d747a76c0
MD5 f396135a2161dc107707bb4c31845912
BLAKE2b-256 653d2aac1804b9a8abbf1fb0e36cc394bdfe40bf8da751b10aed69562c3ac8bc

See more details on using hashes here.

File details

Details for the file cacholote-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: cacholote-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 36.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for cacholote-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 17d06a500f69d39baacdf25671c6e2a2ef3887dbdd751873d33dddf0759e26a3
MD5 b466c43d8c7ed7ae6fba61e1b8607171
BLAKE2b-256 18e366ef7a5f021cc39d9e19d57abff2aed5bae27c136a0c455f9c22280b5cf1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page