Skip to main content

Efficiently cache calls to functions

Project description

cacholote

Efficiently cache calls to functions

Quick Start

>>> import cacholote
>>> cacholote.config.set(cache_db_urlpath="sqlite://")
<cacholote.config.set ...

>>> @cacholote.cacheable
... def now():
...     import datetime
...     return datetime.datetime.now()

>>> now() == now()
True

>>> with cacholote.config.set(use_cache=False):
...     now() == now()
False

Cache files

>>> import cacholote

>>> import tempfile
>>> tmpdir = tempfile.TemporaryDirectory().name
>>> cacholote.config.set(
...     cache_db_urlpath="sqlite://",
...     cache_files_urlpath=tmpdir,
... )
<cacholote.config.set ...

>>> cached_open = cacholote.cacheable(open)
>>> cached_file = cached_open("README.md")
>>> cached_file.name.startswith(tmpdir)
True

>>> import filecmp
>>> filecmp.cmp("README.md", cached_file.name)
True

Cache Xarray objects

>>> import cacholote

>>> import pytest
>>> xr = pytest.importorskip("xarray")

>>> import tempfile
>>> tmpdir = tempfile.TemporaryDirectory().name
>>> cacholote.config.set(
...     cache_db_urlpath="sqlite://",
...     cache_files_urlpath=tmpdir,
... )
<cacholote.config.set ...

>>> @cacholote.cacheable
... def dataset_from_dict(ds_dict):
...     return xr.Dataset(ds_dict)

>>> ds = dataset_from_dict({"foo": 0})
>>> ds
<xarray.Dataset> Size: 8B
Dimensions:  ()
Data variables:
    foo      int64 ...

>>> ds.encoding["source"].startswith(tmpdir)
True

Configuration

Configuration settings can be accessed using cacholote.config.get() and modified using cacholote.config.set(**kwargs). It is possible to use cacholote.config.set either as a context manager, or to configure global settings. See help(cacholote.config.set).

Defaults are controlled by environment variables and dotenv files. See help(cacholote.config.reset).

Workflow for developers/contributors

For best experience create a new conda environment (e.g. DEVELOP) with Python 3.11:

conda create -n DEVELOP -c conda-forge python=3.11
conda activate DEVELOP

Before pushing to GitHub, run the following commands:

  1. Update conda environment: make conda-env-update
  2. Install this package: pip install -e .
  3. Sync with the latest template (optional): make template-update
  4. Run quality assurance checks: make qa
  5. Run tests: make unit-tests
  6. Run the static type checker: make type-check
  7. Build the documentation (see Sphinx tutorial): make docs-build

Instructions for database updating

In case of database structure upgrade, developers must follow these steps:

  1. Update the new database structure modifying /cacholote/database.py, using SQLAlchemy ORM technologies
  2. Execute from the cacholote work folder:
    alembic revision -m "message about the db modification"
    
  3. The last command will create a new python file inside /alembic/versions. Fill the upgrade function with the operations that must be executed to migrate the database from the old structure to the new one. Keep in mind both DDL (structure modification) and DML (data modification) instructions. For reference, use https://alembic.sqlalchemy.org/en/latest/ops.html#ops. Similarly, do the same with the downgrade function.
  4. Commit and push the modifications and the new file.

For details about the alembic migration tool, see the Alembic tutorial.

License

Copyright 2019, B-Open Solutions srl.
Copyright 2022, European Union.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cacholote-1.3.2.tar.gz (51.9 kB view details)

Uploaded Source

Built Distribution

cacholote-1.3.2-py3-none-any.whl (36.4 kB view details)

Uploaded Python 3

File details

Details for the file cacholote-1.3.2.tar.gz.

File metadata

  • Download URL: cacholote-1.3.2.tar.gz
  • Upload date:
  • Size: 51.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for cacholote-1.3.2.tar.gz
Algorithm Hash digest
SHA256 6c6fd1461519d4fafb985b8792fde87a84e8d76d6d9352fb37cb4549d7fd0ee6
MD5 195667f9e26f5935283fbf30a4165fc3
BLAKE2b-256 14888db8920222ce680af1554c3bb98f37137348248dc89209df87efd0983cae

See more details on using hashes here.

File details

Details for the file cacholote-1.3.2-py3-none-any.whl.

File metadata

  • Download URL: cacholote-1.3.2-py3-none-any.whl
  • Upload date:
  • Size: 36.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for cacholote-1.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 845df9f0b657f6010177a4f8f050cfd05bedafa1cd426e2264bcfd1b073a2e82
MD5 7a3cd6fcb86da7c764aa0dc1ddd13c7e
BLAKE2b-256 33d3eb90a6858bf19eb45ff794191b0e39a81a7c68741e9092e66ae2a839e673

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page