Skip to main content

Efficiently cache calls to functions

Project description

cacholote

Efficiently cache calls to functions

Quick Start

>>> import cacholote
>>> cacholote.config.set(cache_db_urlpath="sqlite://")
<cacholote.config.set ...

>>> @cacholote.cacheable
... def now():
...     import datetime
...     return datetime.datetime.now()

>>> now() == now()
True

>>> with cacholote.config.set(use_cache=False):
...     now() == now()
False

Cache files

>>> import cacholote

>>> import tempfile
>>> tmpdir = tempfile.TemporaryDirectory().name
>>> cacholote.config.set(
...     cache_db_urlpath="sqlite://",
...     cache_files_urlpath=tmpdir,
... )
<cacholote.config.set ...

>>> cached_open = cacholote.cacheable(open)
>>> cached_file = cached_open("README.md")
>>> cached_file.name.startswith(tmpdir)
True

>>> import filecmp
>>> filecmp.cmp("README.md", cached_file.name)
True

Cache Xarray objects

>>> import cacholote

>>> import pytest
>>> xr = pytest.importorskip("xarray")

>>> import tempfile
>>> tmpdir = tempfile.TemporaryDirectory().name
>>> cacholote.config.set(
...     cache_db_urlpath="sqlite://",
...     cache_files_urlpath=tmpdir,
... )
<cacholote.config.set ...

>>> @cacholote.cacheable
... def dataset_from_dict(ds_dict):
...     return xr.Dataset(ds_dict)

>>> ds = dataset_from_dict({"foo": 0})
>>> ds
<xarray.Dataset> Size: 8B
Dimensions:  ()
Data variables:
    foo      int64 ...

>>> ds.encoding["source"].startswith(tmpdir)
True

Configuration

Configuration settings can be accessed using cacholote.config.get() and modified using cacholote.config.set(**kwargs). It is possible to use cacholote.config.set either as a context manager, or to configure global settings. See help(cacholote.config.set).

Defaults are controlled by environment variables and dotenv files. See help(cacholote.config.reset).

Workflow for developers/contributors

For best experience create a new conda environment (e.g. DEVELOP) with Python 3.11:

conda create -n DEVELOP -c conda-forge python=3.11
conda activate DEVELOP

Before pushing to GitHub, run the following commands:

  1. Update conda environment: make conda-env-update
  2. Install this package: pip install -e .
  3. Sync with the latest template (optional): make template-update
  4. Run quality assurance checks: make qa
  5. Run tests: make unit-tests
  6. Run the static type checker: make type-check
  7. Build the documentation (see Sphinx tutorial): make docs-build

Instructions for database updating

In case of database structure upgrade, developers must follow these steps:

  1. Update the new database structure modifying /cacholote/database.py, using SQLAlchemy ORM technologies
  2. Execute from the cacholote work folder:
    alembic revision -m "message about the db modification"
    
  3. The last command will create a new python file inside /alembic/versions. Fill the upgrade function with the operations that must be executed to migrate the database from the old structure to the new one. Keep in mind both DDL (structure modification) and DML (data modification) instructions. For reference, use https://alembic.sqlalchemy.org/en/latest/ops.html#ops. Similarly, do the same with the downgrade function.
  4. Commit and push the modifications and the new file.

For details about the alembic migration tool, see the Alembic tutorial.

License

Copyright 2019, B-Open Solutions srl.
Copyright 2022, European Union.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cacholote-1.4.0.tar.gz (52.1 kB view details)

Uploaded Source

Built Distribution

cacholote-1.4.0-py3-none-any.whl (36.4 kB view details)

Uploaded Python 3

File details

Details for the file cacholote-1.4.0.tar.gz.

File metadata

  • Download URL: cacholote-1.4.0.tar.gz
  • Upload date:
  • Size: 52.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for cacholote-1.4.0.tar.gz
Algorithm Hash digest
SHA256 653acd48b28b76726e8eb5a66345a93410983bcfb50b6e87c5c7b9116d501e19
MD5 276134b33d2f4481c795711ffe934960
BLAKE2b-256 33a0333a88d4abf10708f551578cab1997af6f9e5ec1be11afb51993409b1e1e

See more details on using hashes here.

File details

Details for the file cacholote-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: cacholote-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 36.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for cacholote-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 22dfd1e7a16320854133e28e23d97a1899ac8769f1b7d1b3a56ff2190a0a7f5b
MD5 061739c47d3c13caad1ec796683c06f4
BLAKE2b-256 02fbae00178bf91abee4ec50225f716904046a80734917ef6bdc607f3a0a81b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page