Skip to main content

calamus is a library built on top of marshmallow to allow (de-)Serialization of Python classes to JSON-LD.

Project description

https://github.com/SwissDataScienceCenter/calamus/blob/master/docs/reed.png?raw=true

calamus: JSON-LD Serialization Library for Python

Documentation Status https://github.com/SwissDataScienceCenter/calamus/workflows/Test,%20Integration%20Tests%20and%20Deploy/badge.svg https://badges.gitter.im/SwissDataScienceCenter/calamus.svg

calamus is a library built on top of marshmallow to allow (de-)Serialization of Python classes to JSON-LD

Installation

calamus releases and development versions are available from PyPI. You can install it using any tool that knows how to handle PyPI packages.

With pip:

$ pip install calamus

Usage

Assuming you have a class like

class Book:
    def __init__(self, _id, name):
        self._id = _id
        self.name = name

Declare schemes

You can declare a schema for serialization like

from calamus import fields
from calamus.schema import JsonLDSchema

schema = fields.Namespace("http://schema.org/")

class BookSchema(JsonLDSchema):
    _id = fields.Id()
    name = fields.String(schema.name)

    class Meta:
        rdf_type = schema.Book
        model = Book

The fields.Namespace class represents an ontology namespace.

Make sure to set rdf_type to the RDF triple type you want get and model to the python class this schema applies to.

Serializing objects (“Dumping”)

You can now easily serialize python classes to JSON-LD

book = Book(_id="http://example.com/books/1", name="Ilias")
jsonld_dict = BookSchema().dump(book)
#{
#    "@id": "http://example.com/books/1",
#    "@type": "http://schema.org/Book",
#    "http://schema.org/name": "Ilias",
#}

jsonld_string = BookSchema().dumps(book)
#'{"@id": "http://example.com/books/1", "http://schema.org/name": "Ilias", "@type": "http://schema.org/Book"}')

Deserializing objects (“Loading”)

You can also easily deserialize JSON-LD to python objects

data = {
    "@id": "http://example.com/books/1",
    "@type": "http://schema.org/Book",
    "http://schema.org/name": "Ilias",
}
book = BookSchema().load(data)
#<Book(_id="http://example.com/books/1", name="Ilias")>

Validation of properties in a namespace using an OWL ontology

You can validate properties in a python class during serialization using an OWL ontology. The ontology used in the example below doesn’t have publishedYear defined as a property.

class Book:
    def __init__(self, _id, name, author, publishedYear):
        self._id = _id
        self.name = name
        self.author = author
        self.publishedYear = publishedYear

class BookSchema(JsonLDSchema):
    _id = fields.Id()
    name = fields.String(schema.name)
    author = fields.String(schema.author)
    publishedYear = fields.Integer(schema.publishedYear)

    class Meta:
       rdf_type = schema.Book
       model = Book

book = Book(id="http://example.com/books/2", name="Outliers", author="Malcolm Gladwell", publishedYear=2008)

data = {
    "@id": "http://example.com/books/3",
    "@type": "http://schema.org/Book",
    "http://schema.org/name" : "Harry Potter & The Prisoner of Azkaban",
    "http://schema.org/author" : "J. K. Rowling",
    "http://schema.org/publishedYear" : 1999
}

valid_invalid_dict = BookSchema().validate_properties(
    data,
    "tests/fixtures/book_ontology.owl"
)
# The ontology doesn't have a publishedYear property
# {'valid': {'http://schema.org/author', 'http://schema.org/name'}, 'invalid': {'http://schema.org/publishedYear'}}

validated_json = BookSchema().validate_properties(book, "tests/fixtures/book_ontology.owl", return_valid_data=True)
#{'@id': 'http://example.com/books/2', '@type': ['http://schema.org/Book'], 'http://schema.org/name': 'Outliers', 'http://schema.org/author': 'Malcolm Gladwell'}

You can also use this during deserialization.

class Book:
    def __init__(self, _id, name, author):
        self._id = _id
        self.name = name
        self.author = author

schema = fields.Namespace("http://schema.org/")

class BookSchema(JsonLDSchema):
    _id = fields.Id()
    name = fields.String(schema.name)
    author = fields.String(schema.author)

    class Meta:
        rdf_type = schema.Book
        model = Book

data = {
    "@id": "http://example.com/books/1",
    "@type": "http://schema.org/Book",
    "http://schema.org/name": "Harry Potter & The Chamber of Secrets",
    "http://schema.org/author": "J. K. Rowling",
    "http://schema.org/publishedYear": 1998,
}

verified_data = BookSchema().validate_properties(data, "tests/fixtures/book_ontology.owl", return_valid_data=True)

book_verified = BookSchema().load(verified_data)
#<Book(_id="http://example.com/books/1", name="Harry Potter & The Chamber of Secrets", author="J. K. Rowling")>

The function validate_properties has 3 arguments: data, ontology and return_valid_data.

data can be a Json-LD, a python object of the schema’s model class, or a list of either of those.

ontology is a string pointing to the OWL ontology’s location (path or URI).

return_valid_data is an optional argument with the default value False. Default behavior is to return dictionary with valid and invalid properties. Setting this to True returns the JSON-LD with only validated properties.

Annotations

Classes can also be annotated directly with schema information, removing the need to have a separate schema. This can be done by setting the metaclass of the model to JsonLDAnnotation.

import datetime.datetime as dt

from calamus import JsonLDAnnotation
import calamus.fields as fields

schema = fields.Namespace("http://schema.org/")

class User(metaclass=JsonLDAnnotation):
    _id = fields.Id()
    birth_date = fields.Date(schema.birthDate, default=dt.now)
    name = fields.String(schema.name, default=lambda: "John")

    class Meta:
        rdf_type = schema.Person

user = User()

# dumping
User.schema().dump(user)
# or
user.dump()

# loading
u = User.schema().load({"_id": "http://example.com/user/1", "name": "Bill", "birth_date": "1970-01-01 00:00"})

Support

You can reach us on our Gitter Channel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

calamus-0.3.11.tar.gz (21.2 kB view details)

Uploaded Source

Built Distribution

calamus-0.3.11-py3-none-any.whl (21.9 kB view details)

Uploaded Python 3

File details

Details for the file calamus-0.3.11.tar.gz.

File metadata

  • Download URL: calamus-0.3.11.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.9.7 Linux/5.14.2-arch1-2

File hashes

Hashes for calamus-0.3.11.tar.gz
Algorithm Hash digest
SHA256 5af86634a208325c916e2b20e2a1b505d290a4c2f08bea22bb1c0f362ca5a202
MD5 c52c43937a9eeaf06ca4eca72b071877
BLAKE2b-256 7eea87d576e2cf74f19b8281214f443470450615547a8ad19e18568fcb836099

See more details on using hashes here.

File details

Details for the file calamus-0.3.11-py3-none-any.whl.

File metadata

  • Download URL: calamus-0.3.11-py3-none-any.whl
  • Upload date:
  • Size: 21.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.9.7 Linux/5.14.2-arch1-2

File hashes

Hashes for calamus-0.3.11-py3-none-any.whl
Algorithm Hash digest
SHA256 fc17601ec64125ec7e6555a09973566f24549f6fa339acfa7de3259d7c02fa57
MD5 5b73a65e17dc46a4e9662492a07e1ad1
BLAKE2b-256 53e02077efb84a535564ef4714296492ce9d55aedbe6245c339864693f61c83f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page