Skip to main content

calamus is a library built on top of marshmallow to allow (de-)Serialization of Python classes to JSON-LD.

Project description

https://github.com/SwissDataScienceCenter/calamus/blob/master/docs/reed.png?raw=true

calamus: JSON-LD Serialization Library for Python

Documentation Status https://github.com/SwissDataScienceCenter/calamus/workflows/Test,%20Integration%20Tests%20and%20Deploy/badge.svg https://badges.gitter.im/SwissDataScienceCenter/calamus.svg

calamus is a library built on top of marshmallow to allow (de-)Serialization of Python classes to JSON-LD

Installation

calamus releases and development versions are available from PyPI. You can install it using any tool that knows how to handle PyPI packages.

With pip:

$ pip install calamus

Usage

Assuming you have a class like

class Book:
    def __init__(self, _id, name):
        self._id = _id
        self.name = name

Declare schemes

You can declare a schema for serialization like

from calamus import fields
from calamus.schema import JsonLDSchema

schema = fields.Namespace("http://schema.org/")

class BookSchema(JsonLDSchema):
    _id = fields.Id()
    name = fields.String(schema.name)

    class Meta:
        rdf_type = schema.Book
        model = Book

The fields.Namespace class represents an ontology namespace.

Make sure to set rdf_type to the RDF triple type you want get and model to the python class this schema applies to.

Serializing objects (“Dumping”)

You can now easily serialize python classes to JSON-LD

book = Book(_id="http://example.com/books/1", name="Ilias")
jsonld_dict = BookSchema().dump(book)
#{
#    "@id": "http://example.com/books/1",
#    "@type": "http://schema.org/Book",
#    "http://schema.org/name": "Ilias",
#}

jsonld_string = BookSchema().dumps(book)
#'{"@id": "http://example.com/books/1", "http://schema.org/name": "Ilias", "@type": "http://schema.org/Book"}')

Deserializing objects (“Loading”)

You can also easily deserialize JSON-LD to python objects

data = {
    "@id": "http://example.com/books/1",
    "@type": "http://schema.org/Book",
    "http://schema.org/name": "Ilias",
}
book = BookSchema().load(data)
#<Book(_id="http://example.com/books/1", name="Ilias")>

Validation of properties in a namespace using an OWL ontology

You can validate properties in a python class during serialization using an OWL ontology. The ontology used in the example below doesn’t have publishedYear defined as a property.

class Book:
    def __init__(self, _id, name, author, publishedYear):
        self._id = _id
        self.name = name
        self.author = author
        self.publishedYear = publishedYear

class BookSchema(JsonLDSchema):
    _id = fields.Id()
    name = fields.String(schema.name)
    author = fields.String(schema.author)
    publishedYear = fields.Integer(schema.publishedYear)

    class Meta:
       rdf_type = schema.Book
       model = Book

book = Book(id="http://example.com/books/2", name="Outliers", author="Malcolm Gladwell", publishedYear=2008)

data = {
    "@id": "http://example.com/books/3",
    "@type": "http://schema.org/Book",
    "http://schema.org/name" : "Harry Potter & The Prisoner of Azkaban",
    "http://schema.org/author" : "J. K. Rowling",
    "http://schema.org/publishedYear" : 1999
}

valid_invalid_dict = BookSchema().validate_properties(
    data,
    "tests/fixtures/book_ontology.owl"
)
# The ontology doesn't have a publishedYear property
# {'valid': {'http://schema.org/author', 'http://schema.org/name'}, 'invalid': {'http://schema.org/publishedYear'}}

validated_json = BookSchema().validate_properties(book, "tests/fixtures/book_ontology.owl", return_valid_data=True)
#{'@id': 'http://example.com/books/2', '@type': ['http://schema.org/Book'], 'http://schema.org/name': 'Outliers', 'http://schema.org/author': 'Malcolm Gladwell'}

You can also use this during deserialization.

class Book:
    def __init__(self, _id, name, author):
        self._id = _id
        self.name = name
        self.author = author

schema = fields.Namespace("http://schema.org/")

class BookSchema(JsonLDSchema):
    _id = fields.Id()
    name = fields.String(schema.name)
    author = fields.String(schema.author)

    class Meta:
        rdf_type = schema.Book
        model = Book

data = {
    "@id": "http://example.com/books/1",
    "@type": "http://schema.org/Book",
    "http://schema.org/name": "Harry Potter & The Chamber of Secrets",
    "http://schema.org/author": "J. K. Rowling",
    "http://schema.org/publishedYear": 1998,
}

verified_data = BookSchema().validate_properties(data, "tests/fixtures/book_ontology.owl", return_valid_data=True)

book_verified = BookSchema().load(verified_data)
#<Book(_id="http://example.com/books/1", name="Harry Potter & The Chamber of Secrets", author="J. K. Rowling")>

The function validate_properties has 3 arguments: data, ontology and return_valid_data.

data can be a Json-LD, a python object of the schema’s model class, or a list of either of those.

ontology is a string pointing to the OWL ontology’s location (path or URI).

return_valid_data is an optional argument with the default value False. Default behavior is to return dictionary with valid and invalid properties. Setting this to True returns the JSON-LD with only validated properties.

Annotations

Classes can also be annotated directly with schema information, removing the need to have a separate schema. This can be done by setting the metaclass of the model to JsonLDAnnotation.

import datetime.datetime as dt

from calamus.schema import JsonLDAnnotation
import calamus.fields as fields

schema = fields.Namespace("http://schema.org/")

class User(metaclass=JsonLDAnnotation):
    _id = fields.Id()
    birth_date = fields.Date(schema.birthDate, default=dt.now)
    name = fields.String(schema.name, default=lambda: "John")

    class Meta:
        rdf_type = schema.Person

user = User()

# dumping
User.schema().dump(user)
# or
user.dump()

# loading
u = User.schema().load({"_id": "http://example.com/user/1", "name": "Bill", "birth_date": "1970-01-01 00:00"})

Support

You can reach us on our Gitter Channel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

calamus-0.3.14.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

calamus-0.3.14-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file calamus-0.3.14.tar.gz.

File metadata

  • Download URL: calamus-0.3.14.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.10.2 Linux/5.16.16-arch1-1

File hashes

Hashes for calamus-0.3.14.tar.gz
Algorithm Hash digest
SHA256 114b6e4461561aab7c8f44c52ea988f0718ae505242c613487727c3724d68fe3
MD5 4aaca2888e42432da2ebe364ade97395
BLAKE2b-256 6d4356636e6c500bb861d71efd75ed7087bbee548f0319c77280ffca038d0c90

See more details on using hashes here.

File details

Details for the file calamus-0.3.14-py3-none-any.whl.

File metadata

  • Download URL: calamus-0.3.14-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.10.2 Linux/5.16.16-arch1-1

File hashes

Hashes for calamus-0.3.14-py3-none-any.whl
Algorithm Hash digest
SHA256 d614c4b489f12933363abc2c46d45a58b1a53946f22ce1417047b7c9f33f45e4
MD5 e34073ddf486b5dcdf334e24114d8f92
BLAKE2b-256 49407a56482dd7bff9ceae308c8f79ad4abf7f2df7b385937b5f9ab042a01fac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page