Skip to main content

The lensing pipeline of the future: GPU-accelerated, automatically-differentiable, highly modular. Currently under heavy development: expect interface changes and some imprecise/untested calculations.

Project description

caustics logo

ssec CI pre-commit.ci status Documentation Status PyPI version coverage status Zenodo arXiv

caustics

The lensing pipeline of the future: GPU-accelerated, automatically-differentiable, highly modular. Currently under heavy development: expect interface changes and some imprecise/untested calculations.

Installation

Simply install caustics from PyPI:

pip install caustics

Minimal Example

import matplotlib.pyplot as plt
import caustics
import torch

cosmology = caustics.FlatLambdaCDM()
sie = caustics.SIE(cosmology=cosmology, name="lens")
src = caustics.Sersic(name="source")
lnslt = caustics.Sersic(name="lenslight")

x = torch.tensor([
#   z_s  z_l   x0   y0   q    phi     b    x0   y0   q     phi    n    Re
    1.5, 0.5, -0.2, 0.0, 0.4, 1.5708, 1.7, 0.0, 0.0, 0.5, -0.985, 1.3, 1.0,
#   Ie    x0   y0   q    phi  n   Re   Ie
    5.0, -0.2, 0.0, 0.8, 0.0, 1., 1.0, 10.0
])  # fmt: skip

sim = caustics.LensSource(
    lens=sie, source=src, lens_light=lnslt, pixelscale=0.05, pixels_x=100
)
plt.imshow(sim(x), origin="lower")
plt.axis("off")
plt.show()

Caustics lensed image

Batched simulator

newx = x.repeat(20, 1)
newx += torch.normal(mean=0, std=0.1 * torch.ones_like(newx))

images = torch.vmap(sim)(newx)

fig, axarr = plt.subplots(4, 5, figsize=(20, 16))
for ax, im in zip(axarr.flatten(), images):
    ax.imshow(im, origin="lower")
plt.show()

Batched Caustics lensed images

Automatic Differentiation

J = torch.func.jacfwd(sim)(x)

# Plot the new images
fig, axarr = plt.subplots(3, 7, figsize=(20, 9))
for i, ax in enumerate(axarr.flatten()):
    ax.imshow(J[..., i], origin="lower")
plt.show()

Jacobian Caustics lensed image

Documentation

Please see our documentation page for more detailed information.

Contribution

We welcome contributions from collaborators and researchers interested in our work. If you have improvements, suggestions, or new findings to share, please submit an issue or pull request. Your contributions help advance our research and analysis efforts.

To get started with your development (or fork), click the "Open with GitHub Codespaces" button below to launch a fully configured development environment with all the necessary tools and extensions.

Open in GitHub Codespaces

Instruction on how to contribute to this project can be found in the CONTRIBUTION.md

Some guidelines:

  • Please use isort and black to format your code.
  • Use CamelCase for class names and snake_case for variable and method names.
  • Open up issues for bugs/missing features.
  • Use pull requests for additions to the code.
  • Write tests that can be run by pytest.

Thanks to our contributors so far!

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

caustics-0.11.2.tar.gz (6.6 MB view details)

Uploaded Source

Built Distribution

caustics-0.11.2-py3-none-any.whl (104.4 kB view details)

Uploaded Python 3

File details

Details for the file caustics-0.11.2.tar.gz.

File metadata

  • Download URL: caustics-0.11.2.tar.gz
  • Upload date:
  • Size: 6.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for caustics-0.11.2.tar.gz
Algorithm Hash digest
SHA256 a6e10eb42ce426e0d5d8577cdb765640ea8443aa28a5f47635889a23df4b32e8
MD5 d78406f45a7355c54ae096d660711cba
BLAKE2b-256 be5658080b6adaad1ef0c5a766bbdcc1ae3ca80818d7d453bfb35cbc58938c14

See more details on using hashes here.

File details

Details for the file caustics-0.11.2-py3-none-any.whl.

File metadata

  • Download URL: caustics-0.11.2-py3-none-any.whl
  • Upload date:
  • Size: 104.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for caustics-0.11.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1c7110289ed1218c6f9ef9b0af500d43cd692dda7c118b103c2aae0bc650da58
MD5 d10277a8dea8d1479f850b7abea6b8f7
BLAKE2b-256 031b67b5d8e931072f747e0f7d5af187395a7893c2aa678a88524f322aea0707

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page