Skip to main content

The lensing pipeline of the future: GPU-accelerated, automatically-differentiable, highly modular. Currently under heavy development: expect interface changes and some imprecise/untested calculations.

Project description

caustics logo

ssec CI pre-commit.ci status Documentation Status PyPI version coverage

caustics

The lensing pipeline of the future: GPU-accelerated, automatically-differentiable, highly modular. Currently under heavy development: expect interface changes and some imprecise/untested calculations.

Installation

Simply install caustics from PyPI:

pip install caustics

Minimal Example

import matplotlib.pyplot as plt
import caustics
import torch

cosmology = caustics.FlatLambdaCDM()
sie = caustics.SIE(cosmology=cosmology, name="lens")
src = caustics.Sersic(name="source")
lnslt = caustics.Sersic(name="lenslight")

x = torch.tensor([
#   z_s  z_l   x0   y0   q    phi     b    x0   y0   q     phi    n    Re
    1.5, 0.5, -0.2, 0.0, 0.4, 1.5708, 1.7, 0.0, 0.0, 0.5, -0.985, 1.3, 1.0,
#   Ie    x0   y0   q    phi  n   Re   Ie
    5.0, -0.2, 0.0, 0.8, 0.0, 1., 1.0, 10.0
])  # fmt: skip

minisim = caustics.Lens_Source(
    lens=sie, source=src, lens_light=lnslt, pixelscale=0.05, pixels_x=100
)
plt.imshow(minisim(x, quad_level=3), origin="lower")
plt.axis("off")
plt.show()

Caustics lensed image

Batched simulator

newx = x.repeat(20, 1)
newx += torch.normal(mean=0, std=0.1 * torch.ones_like(newx))

images = torch.vmap(minisim)(newx)

fig, axarr = plt.subplots(4, 5, figsize=(20, 16))
for ax, im in zip(axarr.flatten(), images):
    ax.imshow(im, origin="lower")
plt.show()

Batched Caustics lensed images

Automatic Differentiation

J = torch.func.jacfwd(minisim)(x)

# Plot the new images
fig, axarr = plt.subplots(3, 7, figsize=(20, 9))
for i, ax in enumerate(axarr.flatten()):
    ax.imshow(J[..., i], origin="lower")
plt.show()

Jacobian Caustics lensed image

Documentation

Please see our documentation page for more detailed information.

Contribution

We welcome contributions from collaborators and researchers interested in our work. If you have improvements, suggestions, or new findings to share, please submit an issue or pull request. Your contributions help advance our research and analysis efforts.

To get started with your development (or fork), click the "Open with GitHub Codespaces" button below to launch a fully configured development environment with all the necessary tools and extensions.

Open in GitHub Codespaces

Instruction on how to contribute to this project can be found in the CONTRIBUTION.md

Some guidelines:

  • Please use isort and black to format your code.
  • Use CamelCase for class names and snake_case for variable and method names.
  • Open up issues for bugs/missing features.
  • Use pull requests for additions to the code.
  • Write tests that can be run by pytest.

Thanks to our contributors so far!

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

caustics-0.8.0.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

caustics-0.8.0-py3-none-any.whl (72.6 kB view details)

Uploaded Python 3

File details

Details for the file caustics-0.8.0.tar.gz.

File metadata

  • Download URL: caustics-0.8.0.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for caustics-0.8.0.tar.gz
Algorithm Hash digest
SHA256 469d970fe9d5c3cc265dd29342ee7402af0f76dc2c05dd7208173a276fd651ca
MD5 d63efae7fdf088da306683245534937f
BLAKE2b-256 27210aee35cacbc55e840099f707f2695e59a69f1fd7d47c144cf918114ae5b1

See more details on using hashes here.

File details

Details for the file caustics-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: caustics-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 72.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for caustics-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cc4c81c4c76d5d828414e80644067f6ce0779cf2fa2fb2d956fbfbd0ea61202e
MD5 8b674dda4dbb319974b99976b3d69938
BLAKE2b-256 88860eaaa8ae8fa7aa4c18cc91702ef63e8402028b87337cf527456fe46f181d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page