Skip to main content

Color schemes for Python plots, from Paul Tol (2012)

Project description

colorblind

A colorblind-friendly python module that allows optimal color choice for plotting multiple curves
Works only with python 3
3 optimal colormaps are now available to map 2D fields
Version: 2.2.1 Author: Gaylor Wafflard-Fernandez
Author-email: gaylor.wafflard@univ-grenoble-alpes.fr

I. INSTALLATION
pip install cblind

II. USAGE FOR PLOTTING
import cblind as cb
5 palette functions for now
6 test plotting functions

color, linestyle = cb.Coloplots().cblind(nb_of_plots)
from 1 to 12 plots [DISTINCT COLORS]
For more than 12 plots, the linestyle is changed
cb.test_cblind(nb_of_plots)

color, linestyle = cb.Coloplots().contrast(nb_of_plots)
for less than 4 contrast plots [DISTINCT COLORS]
For more than 4 plots, the linestyle is changed
cb.test_contrast(nb_of_plots)

color, linestyle = cb.Coloplots().huescale(nb_of_plots, \*option)
from 1 to 9 plots [SEQUENTIAL DATA]
cb.test_huescale(nb_of_plots, \*option)
With option 'blue','bluegreen','green',
'gold','brown','rose','purple' for less than 3 plots, otherwise ocherscale

color, linestyle = cb.Coloplots().rbscale(nb_of_plots)
from 3 to 11 plots [DIVERGING DATA]
cb.test_rbscale(nb_of_plots)

color, linestyle = cb.Coloplots().solstice(nb_of_plots)
for less than 11 plots [DIVERGING DATA]
cb.test_solstice(nb_of_plots)

color, linestyle = cb.Coloplots().bird(nb_of_plots)
for less than 9 plots [DIVERGING DATA]
cb.test_bird(nb_of_plots)

color, linestyle = cb.Coloplots().pregunta(nb_of_plots)
for less than 9 plots [DIVERGING DATA]
cb.test_pregunta(nb_of_plots)

color, linestyle = cb.Coloplots().rainbow(nb_of_plots)
from 4 to 12 plots [RAINBOW SCHEME]
cb.test_rainbow(nb_of_plots)

color, linestyle = cb.Coloplots().monocolor(nb_of_plots, \*option)
from 1 to 13 plots [MONOCOLOR/PRINTING]
monochromatic but different linestyles cb.test_monocolor(nb_of_plots, \*option) With option "b&w", "blue", "red", "yellow", "green", "purple"

III. USAGE OF COLORMAPS
cmap = cb.cbmap(palette, nbin)
palette : 'rbscale', 'rainbow', 'huescale', 'solstice', 'bird', 'pregunta', 'iris', cf II., but also all colormaps from matplotlib + "_r" variants for reverse colormaps
nbin : discretization of the colormap
data2d : 2D field

a) Example, with a field data2d
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
im=ax.imshow(data2d, cmap=cb.cbmap("rainbow_r", nbin=10), aspect='auto')
fig.colorbar(im)

fig, ax = plt.subplots()
im=ax.imshow(data2d, cmap=cb.cbmap("inferno"), aspect='auto') fig.colorbar(im)

b) Basic mapping functions

cb.mapping(fig,ax,data2d,extent,palette=palette,nbin=nbin)

cb.test_mapping(palette,nbin)

REFERENCE
Paul Tol. 2012. "Colour Schemes." SRON Technical Note, SRON/EPS/TN/09-002.
https://personal.sron.nl/~pault/data/colourschemes.pdf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cblind-2.2.1.tar.gz (20.0 kB view details)

Uploaded Source

Built Distribution

cblind-2.2.1-py3-none-any.whl (19.4 kB view details)

Uploaded Python 3

File details

Details for the file cblind-2.2.1.tar.gz.

File metadata

  • Download URL: cblind-2.2.1.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.5

File hashes

Hashes for cblind-2.2.1.tar.gz
Algorithm Hash digest
SHA256 fca1cab904eabda3b5d522c2a55bca68089274cd3efb3367bb19a31ef0c343a2
MD5 bdece68c3614d6c20333ddb171aee37b
BLAKE2b-256 9f265e1ba5054c7a5eb08c20af5b00db13e9c536465ac437c7b784883997d767

See more details on using hashes here.

File details

Details for the file cblind-2.2.1-py3-none-any.whl.

File metadata

  • Download URL: cblind-2.2.1-py3-none-any.whl
  • Upload date:
  • Size: 19.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.5

File hashes

Hashes for cblind-2.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f7883ef1f78ea770ee6cec59eef03918f7ad24cdf567b4e3f1800ba02661688f
MD5 c93223e04c9d5c7d7e0c7b073e46c6e6
BLAKE2b-256 772c663639ed190422d3caf233c2ea709ae67561638fdb2539799f80876b0e89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page