Skip to main content

NASA's Coordinated Data Analysis System Web Service Client Library

Project description

Synopsis

This library provides a simple python interface to the data and services of NASA's Coordinated Data Analysis System (CDAS). This library implements the client side of the CDAS RESTful web services and can return data in the SpacePy data model with all the original ISTP/SPDF metadata. For more details about the CDAS web services, see https://cdaweb.sci.gsfc.nasa.gov/WebServices/REST/.

Code Example

This package contains example code calling most of the available web services. To run the included example, do the following

python -m cdasws

The following code demonstrates how to access magnetic field measurements from the ACE mission dataset.

from cdasws import CdasWs
import matplotlib.pyplot as plt

cdas = CdasWs()
data = cdas.get_data('AC_H1_MFI', ['Magnitude', 'BGSEc'],
                     '2009-06-01T00:00:00Z', '2009-06-01T00:10:00Z')[1]
print(data)
{'Epoch': VarCopy([datetime.datetime(2009, 6, 1, 0, 0),
     datetime.datetime(2009, 6, 1, 0, 4),
     datetime.datetime(2009, 6, 1, 0, 8)], dtype=object), 'Magnitude': VarCopy([3.495, 3.474, 3.477], dtype=float32), 'BGSEc': VarCopy([[-0.106,  2.521, -2.391],
     [-0.412,  2.402, -2.449],
     [-0.094,  2.309, -2.587]], dtype=float32), 'cartesian': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'metavar0': VarCopy(['Bx GSE', 'By GSE', 'Bz GSE'], dtype='<U6')}

print(data['Magnitude'].attrs)

{'FIELDNAM': 'B-field magnitude', 'VALIDMIN': 0.0, 'VALIDMAX': 500.0, 'SCALEMIN': 0.0, 'SCALEMAX': 10.0, 'UNITS': 'nT', 'FORMAT': 'F8.3', 'VAR_TYPE': 'data', 'DICT_KEY': 'magnetic_field>magnitude', 'FILLVAL': -1e+31, 'DEPEND_0': 'Epoch', 'CATDESC': 'B-field magnitude', 'LABLAXIS': '<|B|>', 'DISPLAY_TYPE': 'time_series', 'DIM_SIZES': 0}

plt.plot(data['Epoch'], data['Magnitude'])
plt.xlabel(data['Epoch'].attrs['LABLAXIS'])
plt.ylabel(data['Magnitude'].attrs['LABLAXIS'] + ' ' +
           data['Magnitude'].attrs['UNITS'])
plt.show()

To have uniformly spaced (with respect to time) values computed, add the binData keyword paramter like this

status, data = cdas.get_data('AC_H1_MFI', ['Magnitude', 'BGSEc'],
                             '2009-06-01T00:00:00Z', '2009-06-01T00:10:00Z',
                             binData={
                                 'interval': 60.0,
                                 'interpolateMissingValues': True,
                                 'sigmaMultiplier': 4
                             })
print(data)

{'Epoch_bin': VarCopy([datetime.datetime(2009, 6, 1, 0, 0, 30),
     datetime.datetime(2009, 6, 1, 0, 1, 30),
     datetime.datetime(2009, 6, 1, 0, 2, 30),
     datetime.datetime(2009, 6, 1, 0, 3, 30),
     datetime.datetime(2009, 6, 1, 0, 4, 30),
     datetime.datetime(2009, 6, 1, 0, 5, 30),
     datetime.datetime(2009, 6, 1, 0, 6, 30),
     datetime.datetime(2009, 6, 1, 0, 7, 30),
     datetime.datetime(2009, 6, 1, 0, 8, 30),
     datetime.datetime(2009, 6, 1, 0, 9, 30)], dtype=object), 'Epoch': VarCopy([datetime.datetime(2009, 6, 1, 0, 0),
     datetime.datetime(2009, 6, 1, 0, 4),
     datetime.datetime(2009, 6, 1, 0, 8)], dtype=object), 'Magnitude': VarCopy([3.495  , 3.48975, 3.4845 , 3.47925, 3.474  , 3.47475, 3.4755 ,
     3.47625, 3.477  , 3.477  ], dtype=float32), 'BGSEc': VarCopy([[-0.106    ,  2.521    , -2.391    ],
     [-0.1825   ,  2.49125  , -2.4055   ],
     [-0.259    ,  2.4615   , -2.42     ],
     [-0.3355   ,  2.4317498, -2.4345   ],
     [-0.412    ,  2.402    , -2.449    ],
     [-0.3325   ,  2.3787498, -2.4835   ],
     [-0.253    ,  2.3555   , -2.518    ],
     [-0.1735   ,  2.33225  , -2.5524998],
     [-0.094    ,  2.309    , -2.587    ],
     [-0.094    ,  2.309    , -2.587    ]], dtype=float32), 'MAGNITUDE_NBIN': VarCopy([1., 0., 0., 0., 1., 0., 0., 0., 1., 0.], dtype=float32), 'MAGNITUDE_BIN_DELTA_MINUS_VAR': VarCopy([-1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31,
     -1.e+31, -1.e+31, -1.e+31], dtype=float32), 'MAGNITUDE_BIN_DELTA_PLUS_VAR': VarCopy([-1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31,
     -1.e+31, -1.e+31, -1.e+31], dtype=float32), 'BGSEC_NBIN': VarCopy([[ 1.,  1.,  1.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [ 1.,  1.,  1.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [ 1.,  1.,  1.],
     [-0., -0., -0.]], dtype=float32), 'BGSEC_BIN_DELTA_MINUS_VAR': VarCopy([[-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31]], dtype=float32), 'BGSEC_BIN_DELTA_PLUS_VAR': VarCopy([[-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31]], dtype=float32), 'cartesian_bin': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'cartesian': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'metavar0': VarCopy(['Bx GSE', 'By GSE', 'Bz GSE'], dtype='<U6'), 'metavar1': VarCopy(['# of Bx GSE', '# of By GSE', '# of Bz GSE'], dtype='<U11'), 'metavar2': VarCopy('# of ', dtype='<U5')}

Motivation

This library hides the HTTP, JSON/XML, and CDF details of the CDAS web services. A python developer only has to deal with python objects and methods (primarily the SpacePy data model object with full ISTP/SPDF metadata).

Dependencies

Accept for common, fundamental depenencies like requests, the primary dependency is SpacePy. And SpacePy is only required if you call the get_data method that returns the data in the SpacePy data model. Refer to the SpacePy documentation for the details of SpacePy's dependencies. In particular, SpacePy's data model import capability is dependent upon CDF which is not (at the time of this writing) automatically installed with SpacePy.

Installation

As noted in the dependencies above, if you intend to call the get_data method, you must install the CDF library by following the procedures at the CDF web site.

Then, to install this package

$ pip install cdasws

API Reference

Refer to cdasws package API reference

or use the standard python help mechanism.

from cdasws import CdasWs
help(CdasWs)

Tests

The tests directory contains unittest tests.

Contributors

Bernie Harris.
e-mail for support.

License

This code is licensed under the NASA Open Source Agreement (NOSA).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

cdasws-0.2.1-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file cdasws-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: cdasws-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 33.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for cdasws-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7ded236377254ef355acf0270a58d61cb2df81746c4755671fd9fcacf4c99c0b
MD5 4dabf1f0c6f7222474bc75fdec8cdfb8
BLAKE2b-256 e834721d2615f3e5bc1f653bd1d8da54d0b48a5c42d773153798e996074da247

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page