Skip to main content

NASA's Coordinated Data Analysis System Web Service Client Library

Project description

Synopsis

This library provides a simple python interface to the data and services of NASA's Coordinated Data Analysis System (CDAS). This library implements the client side of the CDAS RESTful web services and can return data in the SpacePy data model with all the original ISTP/SPDF metadata. For more details about the CDAS web services, see https://cdaweb.sci.gsfc.nasa.gov/WebServices/REST/.

Code Example

This package contains example code calling most of the available web services. To run the included example, do the following

python -m cdasws

The following code demonstrates how to access magnetic field measurements from the ACE mission dataset.

from cdasws import CdasWs
import matplotlib.pyplot as plt

cdas = CdasWs()
data = cdas.get_data('AC_H1_MFI', ['Magnitude', 'BGSEc'],
                     '2009-06-01T00:00:00Z', '2009-06-01T00:10:00Z')[1]
print(data)
{'Epoch': VarCopy([datetime.datetime(2009, 6, 1, 0, 0),
     datetime.datetime(2009, 6, 1, 0, 4),
     datetime.datetime(2009, 6, 1, 0, 8)], dtype=object), 'Magnitude': VarCopy([3.495, 3.474, 3.477], dtype=float32), 'BGSEc': VarCopy([[-0.106,  2.521, -2.391],
     [-0.412,  2.402, -2.449],
     [-0.094,  2.309, -2.587]], dtype=float32), 'cartesian': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'metavar0': VarCopy(['Bx GSE', 'By GSE', 'Bz GSE'], dtype='<U6')}

print(data['Magnitude'].attrs)

{'FIELDNAM': 'B-field magnitude', 'VALIDMIN': 0.0, 'VALIDMAX': 500.0, 'SCALEMIN': 0.0, 'SCALEMAX': 10.0, 'UNITS': 'nT', 'FORMAT': 'F8.3', 'VAR_TYPE': 'data', 'DICT_KEY': 'magnetic_field>magnitude', 'FILLVAL': -1e+31, 'DEPEND_0': 'Epoch', 'CATDESC': 'B-field magnitude', 'LABLAXIS': '<|B|>', 'DISPLAY_TYPE': 'time_series', 'DIM_SIZES': 0}

plt.plot(data['Epoch'], data['Magnitude'])
plt.xlabel(data['Epoch'].attrs['LABLAXIS'])
plt.ylabel(data['Magnitude'].attrs['LABLAXIS'] + ' ' +
           data['Magnitude'].attrs['UNITS'])
plt.show()

To have uniformly spaced (with respect to time) values computed, add the binData keyword paramter like this

status, data = cdas.get_data('AC_H1_MFI', ['Magnitude', 'BGSEc'],
                             '2009-06-01T00:00:00Z', '2009-06-01T00:10:00Z',
                             binData={
                                 'interval': 60.0,
                                 'interpolateMissingValues': True,
                                 'sigmaMultiplier': 4
                             })
print(data)

{'Epoch_bin': VarCopy([datetime.datetime(2009, 6, 1, 0, 0, 30),
     datetime.datetime(2009, 6, 1, 0, 1, 30),
     datetime.datetime(2009, 6, 1, 0, 2, 30),
     datetime.datetime(2009, 6, 1, 0, 3, 30),
     datetime.datetime(2009, 6, 1, 0, 4, 30),
     datetime.datetime(2009, 6, 1, 0, 5, 30),
     datetime.datetime(2009, 6, 1, 0, 6, 30),
     datetime.datetime(2009, 6, 1, 0, 7, 30),
     datetime.datetime(2009, 6, 1, 0, 8, 30),
     datetime.datetime(2009, 6, 1, 0, 9, 30)], dtype=object), 'Epoch': VarCopy([datetime.datetime(2009, 6, 1, 0, 0),
     datetime.datetime(2009, 6, 1, 0, 4),
     datetime.datetime(2009, 6, 1, 0, 8)], dtype=object), 'Magnitude': VarCopy([3.495  , 3.48975, 3.4845 , 3.47925, 3.474  , 3.47475, 3.4755 ,
     3.47625, 3.477  , 3.477  ], dtype=float32), 'BGSEc': VarCopy([[-0.106    ,  2.521    , -2.391    ],
     [-0.1825   ,  2.49125  , -2.4055   ],
     [-0.259    ,  2.4615   , -2.42     ],
     [-0.3355   ,  2.4317498, -2.4345   ],
     [-0.412    ,  2.402    , -2.449    ],
     [-0.3325   ,  2.3787498, -2.4835   ],
     [-0.253    ,  2.3555   , -2.518    ],
     [-0.1735   ,  2.33225  , -2.5524998],
     [-0.094    ,  2.309    , -2.587    ],
     [-0.094    ,  2.309    , -2.587    ]], dtype=float32), 'MAGNITUDE_NBIN': VarCopy([1., 0., 0., 0., 1., 0., 0., 0., 1., 0.], dtype=float32), 'MAGNITUDE_BIN_DELTA_MINUS_VAR': VarCopy([-1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31,
     -1.e+31, -1.e+31, -1.e+31], dtype=float32), 'MAGNITUDE_BIN_DELTA_PLUS_VAR': VarCopy([-1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31,
     -1.e+31, -1.e+31, -1.e+31], dtype=float32), 'BGSEC_NBIN': VarCopy([[ 1.,  1.,  1.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [ 1.,  1.,  1.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [ 1.,  1.,  1.],
     [-0., -0., -0.]], dtype=float32), 'BGSEC_BIN_DELTA_MINUS_VAR': VarCopy([[-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31]], dtype=float32), 'BGSEC_BIN_DELTA_PLUS_VAR': VarCopy([[-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31]], dtype=float32), 'cartesian_bin': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'cartesian': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'metavar0': VarCopy(['Bx GSE', 'By GSE', 'Bz GSE'], dtype='<U6'), 'metavar1': VarCopy(['# of Bx GSE', '# of By GSE', '# of Bz GSE'], dtype='<U11'), 'metavar2': VarCopy('# of ', dtype='<U5')}

Motivation

This library hides the HTTP, JSON/XML, and CDF details of the CDAS web services. A python developer only has to deal with python objects and methods (primarily the SpacePy data model object with full ISTP/SPDF metadata).

Dependencies

Accept for common, fundamental depenencies like requests, the primary dependency is SpacePy. And SpacePy is only required if you call the get_data method that returns the data in the SpacePy data model. Refer to the SpacePy documentation for the details of SpacePy's dependencies. In particular, SpacePy's data model import capability is dependent upon CDF which is not (at the time of this writing) automatically installed with SpacePy.

Installation

As noted in the dependencies above, if you intend to call the get_data method, you must install the CDF library by following the procedures at the CDF web site.

Then, to install this package

$ pip install cdasws

API Reference

Refer to cdasws package API reference

or use the standard python help mechanism.

from cdasws import CdasWs
help(CdasWs)

Tests

The tests directory contains unittest tests.

Contributors

Bernie Harris.
e-mail for support.

License

This code is licensed under the NASA Open Source Agreement (NOSA).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdasws-0.2.2.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

cdasws-0.2.2-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file cdasws-0.2.2.tar.gz.

File metadata

  • Download URL: cdasws-0.2.2.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for cdasws-0.2.2.tar.gz
Algorithm Hash digest
SHA256 ddad26ff79e239b0213418c0a04c21e3467a9942fd9f9533fcce3646ae30f774
MD5 1af65c5e8240193b54790c8980d20a4f
BLAKE2b-256 1bc97d944821bdcb71df164a94f1c369d2672caac167b1e3220fd42d531c2ac4

See more details on using hashes here.

File details

Details for the file cdasws-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: cdasws-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 33.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for cdasws-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 14f45198fae78d2f79c6ec51bb665e4e2ab85fd3c3efd39300f044e130254731
MD5 e63d271fe6140e4f16bbe4ed527dacef
BLAKE2b-256 857c57c64c42949ebb41f0b6168aa6c2d832bd15684266717a529c77a39b07e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page