Skip to main content

NASA's Coordinated Data Analysis System Web Service Client Library

Project description

Synopsis

This library provides a simple python interface to the data and services of NASA's Coordinated Data Analysis System (CDAS). This library implements the client side of the CDAS RESTful web services and can return data in the SpacePy data model with all the original ISTP/SPDF metadata. Frequently asked questions concerning this library are at FAQ. For more general details about the CDAS web services, see https://cdaweb.sci.gsfc.nasa.gov/WebServices/REST/.

Code Example

This package contains example code calling most of the available web services. To run the included example, do the following

python -m cdasws

The following code demonstrates how to access magnetic field measurements from the ACE mission dataset.

from cdasws import CdasWs
import matplotlib.pyplot as plt

cdas = CdasWs()
data = cdas.get_data('AC_H1_MFI', ['Magnitude', 'BGSEc'],
                     '2009-06-01T00:00:00Z', '2009-06-01T00:10:00Z')[1]
print(data)
{'Epoch': VarCopy([datetime.datetime(2009, 6, 1, 0, 0),
     datetime.datetime(2009, 6, 1, 0, 4),
     datetime.datetime(2009, 6, 1, 0, 8)], dtype=object), 'Magnitude': VarCopy([3.495, 3.474, 3.477], dtype=float32), 'BGSEc': VarCopy([[-0.106,  2.521, -2.391],
     [-0.412,  2.402, -2.449],
     [-0.094,  2.309, -2.587]], dtype=float32), 'cartesian': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'metavar0': VarCopy(['Bx GSE', 'By GSE', 'Bz GSE'], dtype='<U6')}

print(data['Magnitude'].attrs)

{'FIELDNAM': 'B-field magnitude', 'VALIDMIN': 0.0, 'VALIDMAX': 500.0, 'SCALEMIN': 0.0, 'SCALEMAX': 10.0, 'UNITS': 'nT', 'FORMAT': 'F8.3', 'VAR_TYPE': 'data', 'DICT_KEY': 'magnetic_field>magnitude', 'FILLVAL': -1e+31, 'DEPEND_0': 'Epoch', 'CATDESC': 'B-field magnitude', 'LABLAXIS': '<|B|>', 'DISPLAY_TYPE': 'time_series', 'DIM_SIZES': 0}

plt.plot(data['Epoch'], data['Magnitude'])
plt.xlabel(data['Epoch'].attrs['LABLAXIS'])
plt.ylabel(data['Magnitude'].attrs['LABLAXIS'] + ' ' +
           data['Magnitude'].attrs['UNITS'])
plt.show()

To have uniformly spaced (with respect to time) values computed (with optional spike removal), add the binData keyword paramter like this

status, data = cdas.get_data('AC_H1_MFI', ['Magnitude', 'BGSEc'],
                             '2009-06-01T00:00:00Z', '2009-06-01T00:10:00Z',
                             binData={
                                 'interval': 60.0,
                                 'interpolateMissingValues': True,
                                 'sigmaMultiplier': 4
                             })
print(data)

{'Epoch_bin': VarCopy([datetime.datetime(2009, 6, 1, 0, 0, 30),
     datetime.datetime(2009, 6, 1, 0, 1, 30),
     datetime.datetime(2009, 6, 1, 0, 2, 30),
     datetime.datetime(2009, 6, 1, 0, 3, 30),
     datetime.datetime(2009, 6, 1, 0, 4, 30),
     datetime.datetime(2009, 6, 1, 0, 5, 30),
     datetime.datetime(2009, 6, 1, 0, 6, 30),
     datetime.datetime(2009, 6, 1, 0, 7, 30),
     datetime.datetime(2009, 6, 1, 0, 8, 30),
     datetime.datetime(2009, 6, 1, 0, 9, 30)], dtype=object), 'Epoch': VarCopy([datetime.datetime(2009, 6, 1, 0, 0),
     datetime.datetime(2009, 6, 1, 0, 4),
     datetime.datetime(2009, 6, 1, 0, 8)], dtype=object), 'Magnitude': VarCopy([3.495  , 3.48975, 3.4845 , 3.47925, 3.474  , 3.47475, 3.4755 ,
     3.47625, 3.477  , 3.477  ], dtype=float32), 'BGSEc': VarCopy([[-0.106    ,  2.521    , -2.391    ],
     [-0.1825   ,  2.49125  , -2.4055   ],
     [-0.259    ,  2.4615   , -2.42     ],
     [-0.3355   ,  2.4317498, -2.4345   ],
     [-0.412    ,  2.402    , -2.449    ],
     [-0.3325   ,  2.3787498, -2.4835   ],
     [-0.253    ,  2.3555   , -2.518    ],
     [-0.1735   ,  2.33225  , -2.5524998],
     [-0.094    ,  2.309    , -2.587    ],
     [-0.094    ,  2.309    , -2.587    ]], dtype=float32), 'MAGNITUDE_NBIN': VarCopy([1., 0., 0., 0., 1., 0., 0., 0., 1., 0.], dtype=float32), 'MAGNITUDE_BIN_DELTA_MINUS_VAR': VarCopy([-1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31,
     -1.e+31, -1.e+31, -1.e+31], dtype=float32), 'MAGNITUDE_BIN_DELTA_PLUS_VAR': VarCopy([-1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31, -1.e+31,
     -1.e+31, -1.e+31, -1.e+31], dtype=float32), 'BGSEC_NBIN': VarCopy([[ 1.,  1.,  1.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [ 1.,  1.,  1.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [-0., -0., -0.],
     [ 1.,  1.,  1.],
     [-0., -0., -0.]], dtype=float32), 'BGSEC_BIN_DELTA_MINUS_VAR': VarCopy([[-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31]], dtype=float32), 'BGSEC_BIN_DELTA_PLUS_VAR': VarCopy([[-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31],
     [-1.e+31, -1.e+31, -1.e+31]], dtype=float32), 'cartesian_bin': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'cartesian': VarCopy(['x_component', 'y_component', 'z_component'], dtype='<U11'), 'metavar0': VarCopy(['Bx GSE', 'By GSE', 'Bz GSE'], dtype='<U6'), 'metavar1': VarCopy(['# of Bx GSE', '# of By GSE', '# of Bz GSE'], dtype='<U11'), 'metavar2': VarCopy('# of ', dtype='<U5')}

Motivation

This library hides the HTTP, JSON/XML, and CDF details of the CDAS web services. A python developer only has to deal with python objects and methods (primarily the SpacePy data model object with full ISTP/SPDF metadata).

Dependencies

Accept for common, fundamental depenencies like requests, the primary dependency is SpacePy. And SpacePy is only required if you call the get_data method that returns the data in the SpacePy data model. Refer to the SpacePy documentation for the details of SpacePy's dependencies. In particular, SpacePy's data model import capability is dependent upon CDF which is not (at the time of this writing) automatically installed with SpacePy.

Installation

As noted in the dependencies above, if you intend to call the get_data method, you must install SpacePy and the CDF library (following the procedures at the SpacePy and CDF web sites).

Then, to install this package

$ pip install -U cdasws

API Reference

Refer to cdasws package API reference

or use the standard python help mechanism.

from cdasws import CdasWs
help(CdasWs)

Tests

The tests directory contains unittest tests.

Contributors

Bernie Harris.
e-mail for support.

License

This code is licensed under the NASA Open Source Agreement (NOSA).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdasws-1.7.31.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

cdasws-1.7.31-py3-none-any.whl (33.7 kB view details)

Uploaded Python 3

File details

Details for the file cdasws-1.7.31.tar.gz.

File metadata

  • Download URL: cdasws-1.7.31.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.12

File hashes

Hashes for cdasws-1.7.31.tar.gz
Algorithm Hash digest
SHA256 cb7a5a6bcf53ce2e1065614ab136c43f9be01e1ba9d075d17ad9f71c6ad327ea
MD5 8e2081aae46ecb491daca819e057305e
BLAKE2b-256 7693ef4a940a7bd23d75d2a1a13192d3f4ec3394b5de319b8ddf084bbd4ca7c3

See more details on using hashes here.

File details

Details for the file cdasws-1.7.31-py3-none-any.whl.

File metadata

  • Download URL: cdasws-1.7.31-py3-none-any.whl
  • Upload date:
  • Size: 33.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.12

File hashes

Hashes for cdasws-1.7.31-py3-none-any.whl
Algorithm Hash digest
SHA256 b43ee5e9ebfc9001174f5aeadd4254de75ee90728f613724be0e1e839475cd08
MD5 ae65708ae3b9b307f6ab51098ae44f7e
BLAKE2b-256 1dd8a7040ea27bf8764ba208a671915aec13f3dda9c6f6ce737110b82f5d80e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page