Skip to main content

Scalable 1D Gaussian Processes

Project description

celerite — Scalable 1D Gaussian Processes in C++, Python, and Julia

Read the documentation at: celerite.rtfd.io.

https://img.shields.io/badge/GitHub-dfm%2Fcelerite-blue.svg?style=flat http://img.shields.io/badge/license-MIT-blue.svg?style=flat&bust http://img.shields.io/travis/dfm/celerite/master.svg?style=flat https://ci.appveyor.com/api/projects/status/74al24yklrlrvwni/branch/master?svg=true&style=flat https://readthedocs.org/projects/celerite/badge/?version=latest&style=flat https://zenodo.org/badge/DOI/10.5281/zenodo.438359.svg?style=flat https://img.shields.io/badge/PDF-latest-orange.svg?style=flat https://img.shields.io/badge/ArXiv-1703.09710-orange.svg?style=flat

The Julia implementation is being developed in a different repository: ericagol/celerite.jl. Issues related to that implementation should be opened there.

If you make use of this code, please cite the following papers:

@article{genrp,
     author = {Sivaram Ambikasaran},
      title = {Generalized Rybicki Press algorithm},
       year = {2015},
    journal = {Numer. Linear Algebra Appl.},
     volume = {22},
     number = {6},
      pages = {1102--1114},
        doi = {10.1002/nla.2003},
        url = {https://arxiv.org/abs/1409.7852}
}

@article{celerite,
    author = {{Foreman-Mackey}, D. and {Agol}, E. and {Angus}, R. and
              {Ambikasaran}, S.},
     title = {Fast and scalable Gaussian process modeling
              with applications to astronomical time series},
      year = {2017},
   journal = {ArXiv},
       url = {https://arxiv.org/abs/1703.09710}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celerite-0.2.0.tar.gz (1.3 MB view details)

Uploaded Source

File details

Details for the file celerite-0.2.0.tar.gz.

File metadata

  • Download URL: celerite-0.2.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for celerite-0.2.0.tar.gz
Algorithm Hash digest
SHA256 fcbb163943ea56c36013b5cbac8591cbf108dfd2383cd393c935f8d20863ac5b
MD5 c67d45344b5a5ff42adb711b50dceb14
BLAKE2b-256 62f042538249c51bcf2abaaa60fa599a5a497f560b1520fd20b890edbe7473bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page