Skip to main content

Fast and scalable Gaussian Processes in 1D

Project description

celerite2

celerite is an algorithm for fast and scalable Gaussian Process (GP) Regression in one dimension and this library, celerite2 is a re-write of the original celerite project to improve numerical stability and integration with various machine learning frameworks. Documentation for this version can be found here. This new implementation includes interfaces in Python and C++, with full support for PyMC (v3 and v4) and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best resource for learning about this is available for free online: Rasmussen & Williams (2006). Similarly, the celerite algorithm is restricted to a specific class of covariance functions (see the original paper for more information and a recent generalization for extensions to structured two-dimensional data). If you need scalable GPs with more general covariance functions, GPyTorch might be a good choice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celerite2-0.3.2.tar.gz (3.1 MB view details)

Uploaded Source

Built Distributions

celerite2-0.3.2-cp312-cp312-win_amd64.whl (645.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

celerite2-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (640.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2-cp312-cp312-macosx_11_0_arm64.whl (602.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

celerite2-0.3.2-cp312-cp312-macosx_10_9_x86_64.whl (830.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

celerite2-0.3.2-cp311-cp311-win_amd64.whl (645.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

celerite2-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (642.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2-cp311-cp311-macosx_11_0_arm64.whl (604.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

celerite2-0.3.2-cp311-cp311-macosx_10_9_x86_64.whl (833.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

celerite2-0.3.2-cp310-cp310-win_amd64.whl (642.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

celerite2-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (636.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2-cp310-cp310-macosx_11_0_arm64.whl (600.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

celerite2-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl (829.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

celerite2-0.3.2-cp39-cp39-win_amd64.whl (642.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

celerite2-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (637.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2-cp39-cp39-macosx_11_0_arm64.whl (601.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

celerite2-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl (829.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file celerite2-0.3.2.tar.gz.

File metadata

  • Download URL: celerite2-0.3.2.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for celerite2-0.3.2.tar.gz
Algorithm Hash digest
SHA256 91a90900037ab6e179f653a12d8d0c49fef1d0e9292b0dd5d0aa40ba00018415
MD5 e058ac22ffb633fbaaa423a6af1a6220
BLAKE2b-256 0693d0681e161a1218309db6609c8455071a27b098e86e4b91fee43bd86661cd

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 da59f1563fb912967025e2ac4e49def0e260f6705574344be8ad04a9a11ddb61
MD5 ca95d49ab865290f498f9e284e8de54b
BLAKE2b-256 0a4b7030c369dbc62f1deeaefc262205ee8fc8f62735eed28f7ec03729511672

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9bf284866ea1a5e94c27bc66cb526086ae8f4cb6e6f0a7747e289e5872ddb269
MD5 dcbd617bfdd6de83d2aee75658b59c59
BLAKE2b-256 f158de7d2b8daa50715ac3bd48bdd285502f27b79eb6fe1285c7d1ce95de26bb

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5cf8b80ea8c465508ace18c511f681a7f979c88495fe02b1e93472df32e0a9e5
MD5 7540d8ddf760c612b3df6b15f867c2ee
BLAKE2b-256 9cf90ad3912ef8e436feda76492f7ef150ee10ba449c6cea5aba3580e9dd5f45

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53781c7b2e8759bc6a9dc8e86965c6a77da1d2f584cf9c0e3822e20af4c64e3a
MD5 6b855a853cea94153dc1cacd4986803a
BLAKE2b-256 4fd6213ad2a9066d5d2127d5bee329b275a3bb9d1b5a87486db809e1674731ba

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2cc48985e35b258b5ee7317d737e80d40e9579bdd5d6a93ba9294374db55ec4a
MD5 0ce501e1e1220d4d1756efc42b368c4e
BLAKE2b-256 fddd76a3f61158879a52117fbdf46ef7088bed3192996d116426a57bb1ba49ff

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 496811917fc85e550b9f86d6b93b97e2b08c179721a11781409d9f4d5d87153b
MD5 234561db57bad6cda0dc607ad8f0c3a8
BLAKE2b-256 142326792653f96e8f9e91987b8171c0e8b540251d61f44f4dc4318dec4eb882

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67b89c27e8d34e0d9e5fafe89864b7a5899f700e40723ebf9fc3ee78d0a13537
MD5 0e86d0114c9166de5199b674a73e88e9
BLAKE2b-256 fc04d781fd51859b5762ddff3d91fba0bd70397251af48bbbbaf015472d5aed0

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 837ba24c3472789111b95ef437ff7caaafd648ef5a6818c092cda0f69b5774a6
MD5 2f2482ead4dec2421e3780a49ed625fa
BLAKE2b-256 823f0d35cae3b7aeba07e73732d063bfac66f360574f0b543a80dd0e28fce674

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6ed527e41c2da7c0248478f0203421db5fbb12748426f04b65cc866c1f32a888
MD5 f011bfc8531fe01c54f0ea27882626c1
BLAKE2b-256 d469802324d6603a35e5671ebe3e32ab9aec4113c004c30b818157c34c550380

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 308700056975396676a668847947bbcf91a1a2320999060428f974713edf63aa
MD5 294a1487ab797e65c7737eab9f848e16
BLAKE2b-256 7ea441a5d43678955a631d829c34630728ab2cca0acedbd7e1e3abf83fa6bac5

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65069c52c94ff4780b89253cad326ba12cd58633f6af29290f0abe46498e8755
MD5 cbc80542575d2ce5f2885aad892be537
BLAKE2b-256 650a965fd88ea8fd2f36e0ea49de9cca4b882db1718d9333ab4cfc2e54b73f93

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e71c92831bad82c2162e36d7a825bf969c28ed6ff2aed63b0f9661603f1ec1e
MD5 2f260e02c8a2e0bc9b5e7004f77e817a
BLAKE2b-256 58afec95425f3b2497c5f899b9a3b35be8fa1e99b6b61405c91d7aaa47090a71

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 642.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for celerite2-0.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4a3cbaf48ddb82ea2b858de88609781c91fc94639317360e8e40ecccb1cf94bc
MD5 ea29a2b50c3f1ce388e27cf3456916b7
BLAKE2b-256 4095bfaef2f543331a0334cb2ca6510d493b8317a298816c49c8df00cad0db1f

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7aa822eba82f9798d5cc3863201f2a69f5f1e984a5b55e446a99ffdcdf8b679b
MD5 6528be04fca79e6a4bb66a0299c33510
BLAKE2b-256 aff4ea74639266e1d8e131665d8f9fed8f7eb5251c7741cd169d1c21e184bb16

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18dbb7799cafe8f4b50f09d49be2bcd0c589e3edb0db98318cc3fba0984dc33f
MD5 fc4f0c7707f3a91052849167ec54be17
BLAKE2b-256 4cd0f89e2eb321c4e08793d7ba46d2b1324257ad0ebd0794ccc74f473fea1fff

See more details on using hashes here.

File details

Details for the file celerite2-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e3b72bbe56787d91baa08007c239368bed5709c8e336dfc937116f033552320
MD5 073c9261d8e04b8ce96822e179e24aa4
BLAKE2b-256 70d8550aaa3ee57c47ef7e31a17102c61bb4929fef8bc9e566c0507ce9d0328b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page