Skip to main content

Fast and scalable Gaussian Processes in 1D

Project description

celerite2

celerite is an algorithm for fast and scalable Gaussian Process (GP) Regression in one dimension and this library, celerite2 is a re-write of the original celerite project to improve numerical stability and integration with various machine learning frameworks. Documentation for this version can be found here. This new implementation includes interfaces in Python and C++, with full support for Theano/PyMC3 and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best resource for learning about this is available for free online: Rasmussen & Williams (2006). Similarly, the celerite algorithm is restricted to a specific class of covariance functions (see the original paper for more information and a recent generalization for extensions to structured two-dimensional data). If you need scalable GPs with more general covariance functions, GPyTorch might be a good choice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celerite2-0.2.1.tar.gz (943.5 kB view details)

Uploaded Source

Built Distributions

celerite2-0.2.1-cp310-cp310-win_amd64.whl (957.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

celerite2-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

celerite2-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (773.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

celerite2-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

celerite2-0.2.1-cp310-cp310-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.2.1-cp39-cp39-win_amd64.whl (959.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

celerite2-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

celerite2-0.2.1-cp39-cp39-macosx_11_0_arm64.whl (773.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

celerite2-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

celerite2-0.2.1-cp39-cp39-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.2.1-cp38-cp38-win_amd64.whl (957.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

celerite2-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (921.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

celerite2-0.2.1-cp38-cp38-macosx_11_0_arm64.whl (773.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

celerite2-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

celerite2-0.2.1-cp38-cp38-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.2.1-cp37-cp37m-win_amd64.whl (958.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

celerite2-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

celerite2-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

celerite2-0.2.1-cp36-cp36m-win_amd64.whl (959.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

celerite2-0.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

celerite2-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file celerite2-0.2.1.tar.gz.

File metadata

  • Download URL: celerite2-0.2.1.tar.gz
  • Upload date:
  • Size: 943.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1.tar.gz
Algorithm Hash digest
SHA256 8d2af3a67a5ca19fcf13f4c09285f98ecfae90b60da8fb56e3f67ed2877fb913
MD5 653a2d63cd88421f3a5b4cfcb242f534
BLAKE2b-256 8c1d89293a96e3f99e6a30ce1405c4232200c1f9ba1a14253f91827a39b1a90a

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 957.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bc974cd5d881ac47b8dd494318d733d509981df70d74e51567c5b9d8f7c4d465
MD5 d0eeff16687dd655d18434f1f31291ee
BLAKE2b-256 bd346d881a8d6cd1a5cb6815066329eb51dbb5be105e2520bd857c801c102a20

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d1f391703a7528f3d7b21e3ff6dff9b17dd4064f202cb75ad88ef736e10b083
MD5 362f56f61c122ceb83152faf55780a1f
BLAKE2b-256 324afc2353d088b50f7a9a21889ccd057ed174e1a5fa416c66f05737d11b631d

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 773.3 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d4e87a094e8b62d2b2d2068292b083ccc5e9f17b782d25cdf5bf671f067d759
MD5 ab630631feb6520a6ad52422656548ed
BLAKE2b-256 0b30b15ea2753b209ea97841a86dbc3fbcf8c844494221598e5c3053c700b4e7

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d4b2cee2330eec035ec46f42698a89f1d9c019470c3be2c87dee5f362a236fa
MD5 36a029193c4fd5e2776a3e750bca6706
BLAKE2b-256 e8710e4c5767d68b2625f5c6e3c48e67bcf85ca8fe4c0c3e62ba591485800fad

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 edd19b93da3abb5285ede4dd47f5b7e467e4cc979701b7a2ac3a9bf54df16112
MD5 f2c4652317bc90cfeb54298743aa2f87
BLAKE2b-256 ee30ac13f060e08259c9160d982967b3bb45c87c8dd686eeeab5320991e2ecc4

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 959.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3e0713e2c2065c5d29b92fff9a44e015be359f3e4acc2c525ff6166373d3065a
MD5 b5a76336747b42460eb0ade83ffd16fe
BLAKE2b-256 281a6054f9d5c804b97cc735e2a32dea9193384f453e859bcc46371ce0bb0810

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7da6af96f2e5b0ff44b1eaf701eca91cfe79c85e95875ba5514e25aa15affd6
MD5 7b940402494632759039386c95d86e68
BLAKE2b-256 1dd39ba960b3e37764061630c3fc3b8b7e10858da841651af3ab028f08ee8e2f

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 773.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6c0ae39ae219ed28dbe769960fb079867a4847dc82b1d4003d25ce20f3138b5
MD5 3a7877bdd7d01ca70b4e5ef6493bcada
BLAKE2b-256 00a086f1fc51e8108099ee6f50a830c33a18f1ae7510e93b85f8e9eec7b2a2db

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7898b487e665fa31e7b168a3ff5af43054d05b2e16991b1eea1ddbe175f45f68
MD5 60e2b9c54818f52a084e8bf0967d3691
BLAKE2b-256 42a4fd834146b64bbbe1cffe379ecfcf2a46839ca2901a02793b75c4e808cc75

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d7e1cf57fac2ffb9d9d4943822fc695f4fff5f79d913ed43f19a29c85411935d
MD5 e0f9e22b31ae60666c0f3d54cd628173
BLAKE2b-256 d0b086bce1de0f6f8aeccfbe79a673bb2ac06c17b6700bbd97d91d5b8cb93b59

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 957.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0178c2c2d727da7abb63d2313ced266a9fe103d32befac946d838f748c469dcb
MD5 75a13b19c2b98dbb9031ec824c500544
BLAKE2b-256 299b89217bfed8548658fa81b311d1f3641235186d201a8ceec91c8790907283

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b93ea454880847ced490fc1cc18033c7afa7131af09f3c81f118434495bdb7d3
MD5 0719305f0769ba6c22293d041738d28e
BLAKE2b-256 4ece62f627412aad4b1647377be0c83aeb3620556f72a7e3ee948a78c37236c9

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 773.4 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b4c39c002fc739d7a428ca0f534abb94a1cd52f3d679f0fd83ad9a0590292585
MD5 12471745e556acc26deb59d762c1f369
BLAKE2b-256 872ef6815ade764ade4512a56173d8d68569874f323abc635aa1cd70cad4b081

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48d3748504658127444701e1dcd51f4a93f68b1a758a30ff1e7a7488e0e017e6
MD5 42e5d07bdeaabf727abbeb8eba32d9b0
BLAKE2b-256 ebd941c8b25fd04446b3c1b56538959007b5a2feb1e2e8f8de7183f5abde2a9a

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e09c7067b57b7a80537c2678f2672c434d687a77c1625a7528a732ce8fdd03c7
MD5 f1fb5496ebd60a041c8b320c5644b25d
BLAKE2b-256 c18288ab5afc4ef9dde62eb954b82c7f65abc4f0cba300b37a79c23e73939cf3

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 958.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7ac8db0191f515b6ba9d95ab75046c7a0d42d00d47140d73ca1e5d686f192986
MD5 c22e5fd5b15a9d7617e06a09b17b1235
BLAKE2b-256 0eef30e68961e42f3c7d196524d7d7a8698bf633730c4ab9253f62f51a48f03c

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23598e765a50a7e853eab3baf5164ba5ae23bbb581867eb3e2f1c8a141b15c76
MD5 24fff0cf5dbc7626a81abeb4c5958af0
BLAKE2b-256 a2904f418a3bd0a90fc4b946a134df4b4dac5f9f9acc567797fc47c8bf7eee88

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0563e9ab6373f4850f21b271ebe5081cc86ab405f52ae539b618c08617e7d02a
MD5 ded6085843d03c553d7979fe688df329
BLAKE2b-256 312c2b53db5f500200ed7ea5b3521d2f71ff3312e74253d6f2dd9229a10f430f

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 959.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 97f0e0fb706bf718a5f1a775962f636a762ebfb829834dfa1c6fb6de2ddfd247
MD5 b5497c15034e19987f0fa740f2c0040a
BLAKE2b-256 ee4e0c4f7ab8de2f875f7509517d8b14641cbdade02d083ffd4f787da42ebfc5

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef63f3d5d31e23a957e9afc30b6584beff07263686ebfa87941a6c0c919a15eb
MD5 2835ec804eba452fcdb77f182578ed7c
BLAKE2b-256 46aece3dd5d74d18c44efc4d294be6e855f981d967e442cdbbb5a0ec8343f765

See more details on using hashes here.

File details

Details for the file celerite2-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: celerite2-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for celerite2-0.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c736d85a4f20fed6deaa20711bceceade5af4e6a14b60715dce360c56e2cf0e2
MD5 81ca976a260ccac7b7c6505fdb1406c3
BLAKE2b-256 c508d869786883026178bcc709ec207ffbcbbeb96dcd98c6af155bf4c53a7d87

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page