Skip to main content

Fast and scalable Gaussian Processes in 1D

Project description

celerite2

celerite is an algorithm for fast and scalable Gaussian Process (GP) Regression in one dimension and this library, celerite2 is a re-write of the original celerite project to improve numerical stability and integration with various machine learning frameworks. Documentation for this version can be found here. This new implementation includes interfaces in Python and C++, with full support for PyMC (v3 and v4) and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best resource for learning about this is available for free online: Rasmussen & Williams (2006). Similarly, the celerite algorithm is restricted to a specific class of covariance functions (see the original paper for more information and a recent generalization for extensions to structured two-dimensional data). If you need scalable GPs with more general covariance functions, GPyTorch might be a good choice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celerite2-0.3.0.tar.gz (953.3 kB view details)

Uploaded Source

Built Distributions

celerite2-0.3.0-cp312-cp312-win_amd64.whl (980.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

celerite2-0.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (947.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

celerite2-0.3.0-cp312-cp312-macosx_11_0_arm64.whl (806.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

celerite2-0.3.0-cp312-cp312-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

celerite2-0.3.0-cp312-cp312-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.0-cp311-cp311-win_amd64.whl (983.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

celerite2-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (947.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

celerite2-0.3.0-cp311-cp311-macosx_11_0_arm64.whl (812.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

celerite2-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

celerite2-0.3.0-cp311-cp311-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.0-cp310-cp310-win_amd64.whl (980.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

celerite2-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (945.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

celerite2-0.3.0-cp310-cp310-macosx_11_0_arm64.whl (809.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

celerite2-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

celerite2-0.3.0-cp310-cp310-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.0-cp39-cp39-win_amd64.whl (982.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

celerite2-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (945.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

celerite2-0.3.0-cp39-cp39-macosx_11_0_arm64.whl (809.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

celerite2-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

celerite2-0.3.0-cp39-cp39-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.0-cp38-cp38-win_amd64.whl (980.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

celerite2-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (944.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

celerite2-0.3.0-cp38-cp38-macosx_11_0_arm64.whl (808.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

celerite2-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

celerite2-0.3.0-cp38-cp38-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.0-cp37-cp37m-win_amd64.whl (981.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

celerite2-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (944.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

celerite2-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

celerite2-0.3.0-cp36-cp36m-win_amd64.whl (985.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

celerite2-0.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (944.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

celerite2-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file celerite2-0.3.0.tar.gz.

File metadata

  • Download URL: celerite2-0.3.0.tar.gz
  • Upload date:
  • Size: 953.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for celerite2-0.3.0.tar.gz
Algorithm Hash digest
SHA256 31aaf0253dc0cde5aa02bfcd6032bc11b1bb9b0b40fee8976d57ec755f14b660
MD5 a3ca115045f2b67cbe151c128d8b7448
BLAKE2b-256 05bb6b0afcb76652c25b0e765142f9675878542b556124cdc0542755767f5b1e

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 60891345d605a347fcd9d71deaa4c11ab5f3bf4f8c56ff8cd614ee75cc2feed5
MD5 592a79def593ec81a0a1e94dbae4bf31
BLAKE2b-256 2fdb2225e93a15d52782b8db5a0eef8fb7269345059782bd0960a6744a2a9dd8

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf5776fef1b21919e9a2ca676aec177eb43309bd80d7c71c45e52720746c893f
MD5 4a5945836da4bff493b374ed907a2f8d
BLAKE2b-256 10b2cb4174c87f6a1cd0f427213a419552c4ed06a5fbf3e7d05f5c031b477828

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bce16ffda6f1933bf736a9bc81d5cf61a056d50b211beab89cc1892dad6aede
MD5 3ef396bfc1b4df04adf32330c73f96ae
BLAKE2b-256 4f30e9f821930d3063daee1db5c16ad7a8e93138dcd6bdc13754cb7ae28a9fe3

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24fb7e24f7dc7fb571e90adbfe9421cbd4be7366596c7543fe6d6618fb33dac9
MD5 5590f57e107df08a1423380578e42ccc
BLAKE2b-256 1d0a3da54066e089802e3deab211d41972f3bb4a4aa6073f2da2790d20dd8c85

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fc25150c51755032b43735677fe381ad3fc8409dd55803c3b918799ebee7c64c
MD5 b29c39ee9bebebdb89158747cf844435
BLAKE2b-256 6e99b74d4e76c44adebf988854dff74622faf7f09419543c0697fda1b7f13d7b

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 113586416cbb9eed7428de7d160f5a4ea107f249763c7078274a229e53123865
MD5 fa6e985287933790620b4e706d00b987
BLAKE2b-256 8d8daa35ed711cddbbc1f45a6421dca1c3ec397b124b10d67947936718db7b82

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe5648aac8a0039d2352eddc641ea97d3c06d17d892368c0d71f4fa933cdab27
MD5 309119303ea511ccaebefa0cc5ad1ae9
BLAKE2b-256 e5700e56af78d2e5702c1af8539b59617b6101a6635e1dc2d07a3cc00e575764

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 979e46671bc36da3fdc52406ece3b6a2dfd1c2bd657a41f20bf1c8766538c5ba
MD5 8daeff113c826d0f6c6736dbaf51aa3f
BLAKE2b-256 bf1eecd47e99c58d686999e4398c4d82aa61d9d0e6240ea6d4b4c505a234d118

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5c16630571b6628d0a9e0c669247c305729c4a8a4492c44adc5b462fb544d1d
MD5 74d8fc116a3e5cf9880a53d9c70d3783
BLAKE2b-256 894e4beb5b20423c63cc51c1e436ade6987ef08d1638099af2885993416f57ea

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9854afd7304a0d0f0d27b86bfcb9f0e21db798f753699833227c12f777b4261a
MD5 7aa30df07706316f75c7b1416829a53f
BLAKE2b-256 b521c2d5771130999b991fa2cd05cbfcd72fade44848509289aa1deb765c26f9

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fe086c053923e12c1cc04cdb0b6e96fe016af49fa2e1f19736b7141d54744a7e
MD5 f8a3dce4958d39b461ddbe5cbad6cf03
BLAKE2b-256 e86302df3bf37da4250b5ec86ae8d1ca3ade963c23ebb0cef7f2264209e14778

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6fc5a032f9b6b9ecff1a476d7351ac11e6f8583acdae5057a9f56a37f0036723
MD5 b702529e382c8b166de52f495dcf440d
BLAKE2b-256 65c6288df09b3543da7f1a072d534ec62c28d3bc6c8c94bf4db02ab3e92eda1a

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5b9faedc36f29679d8cc7ed3f760b65052f7396c00cdcb005a703f794ec37d9
MD5 44dc2b026190174d73e6b2c2dce4a6ee
BLAKE2b-256 4ae93c060b6a769ca5b9e0ee48169287397db0dd46fc1d8ab588e23a59b7a5a4

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0266fa4364a63527556e025dbd68152b318a4e8b4d049f88b48183fc52fdc9ed
MD5 e2d06901c6f354f2f917b334687faf04
BLAKE2b-256 3453b8b33ead767ccd7d4db6d2b72d987f91daffa9e86a22461c4770ca5b69ed

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 27acdbb17187e7be4605e3e2bbc6d786bded3114ec9f9eb7ceefd5f5bf8a2fcb
MD5 8bfb0346a40588ee2d11f3f9a0cf789b
BLAKE2b-256 4c60675357d7b70b017b0b6018d0487f1b32ff7ce94aceca923560edf31e88a3

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 982.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for celerite2-0.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 416c1d5bd3f72edb0b5227283906281abdef924e2fd5e59b6bfa82f7ae61c6be
MD5 fa789bd7589462f006feadd1166390bd
BLAKE2b-256 d9736827dd628be9429db172ee0db3458581775650843343a4797bfd05debe17

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 786ef3f117c7f44cfa30c6db7c3c5efb00fbe037b236781adeb9ca7deddd4938
MD5 41b930d183a22c3da062de48747af35b
BLAKE2b-256 a715209a992ebe0db671797a9aa493ffc32a18b8856a3e7d9f51f3e446fdc98b

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7eb8afaff76cbb5c8811b4044d328d139e4668388cb05354dc95b8ab95018f6
MD5 2b09a44012be2dec03a99b251eaaec77
BLAKE2b-256 c0216a6e8baa09630b8bed217a22ce2deaeac29a59202ffa4d89053b1a0288eb

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1b5354b1f31baa3165e9b476c931723d30f990cbf6f87355bad98cec6a91f38
MD5 8fdc5eec7307fa7f32fd9633d77c25ed
BLAKE2b-256 47a20ea7f10ab28fa249a1d13e0eae5be6e0bcd33347c7e0331083ac07224dc7

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 70f4419b646e30050aef910e1b20a77f8378971102a5d9b15d5be562836568c7
MD5 8bccbc244aaad50b2e2ead4ef695c9bc
BLAKE2b-256 98ac1988b2ed9e9522324fa37b29bc98941247ca866df3e66228c681d8ae2c1b

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 980.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for celerite2-0.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9854adacadf5d51197bd6b90273c37e037931214e931e540b2839f6792a2a7c6
MD5 aadf282b8a538b458fceb8c88a566fdc
BLAKE2b-256 5b2cbb9b056a4001d1ac27d1d256fcc81e46fa80c1b091b14e9006cf892282e6

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 829c3c70803f4cc436f6111890efbb59c85027061f94b87a7fa735407cd7e2bb
MD5 e563a342740353d1ff8f8cccee81a103
BLAKE2b-256 fd8076e430f38f1d18ae11ba7102601dc583a1c0f7c428fb5f6b2e4b68c6e658

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11b2aa5c5bccdae3ddb17e6bc232fcb9cdd91f0c9e6b95fc717128d2edea9e9d
MD5 9a4f3a6a34cb4f259e88441345aa208c
BLAKE2b-256 6b9f14d4b6a6ab86a6e4685c45aabfcdb14d65bcc14add2f97e5be508bafd560

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 59bd97d0a94f7a1331f5027ed995995835e6532ee931db55fa6320368aac0332
MD5 08e4ce47b3ab1aa019d033c6e42fcf4e
BLAKE2b-256 399a224237f5481c9b2b5c1a19140056818636b2ac2794eb5d6318916b6c5c17

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 38a090efef0f4ff0712b852631d91b8b34cf9446247cba694414a98ddfbef481
MD5 0409d980fbda71e9ae453e5896948ce3
BLAKE2b-256 13ffb2e305015338952af12c7ed34674c0c481f749ac3fb46916922524b4c4e2

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 981.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for celerite2-0.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e2cc0bc9b6a08bf845f775f713cec489f70fe07c8f49ca36322ec456a5cd01ee
MD5 4c5c73a1b9aeb3d9479021d569fa0761
BLAKE2b-256 dc006c0d52fb64e8d897ec31a9308aaea4939e0d74eb78ae26524c7e45feebdb

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb69ed818dcef4d1461bafe03b39d7b15c15eee8e357bf6bb46344d9698443b4
MD5 9ed469c9c5c98c4f529371855f2346cb
BLAKE2b-256 29215923998bc042990b7c29c0315988d248d7909d7779e70c04b3cf8d38632e

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26bfe450881b75b6c80613af88061e29a0f25154bf1208d0fb0f797df9dee4a5
MD5 d0b1aaf29195da4c85e78f5645a7eedc
BLAKE2b-256 29713fef11d51c567dfb1801b4161b317e0cb58e2d2a1fed44103b0c04249a6f

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 985.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for celerite2-0.3.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bb00888d95f8ed37f3521cea210b23343c57ff088463ac0f7fcc1092762025d1
MD5 0c38e23a2605b66a028f8bfddf7c37e0
BLAKE2b-256 db140c7b4bbc84a692de3ca29479d775a5bc85d308a642569a440c3528631c79

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cf2ace2fa772adcf9ee51259cda5f68c1cdec45e5ac0a92dd6c5cb0700c155a
MD5 33a067ca92d7dfea8e0306d04730d47f
BLAKE2b-256 087934f31921f17f8e38a05223b573f0843906da7d84bdd7dd4e0691db6435a8

See more details on using hashes here.

File details

Details for the file celerite2-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 736e59ee893f31bf7f0a0ffe727134b16884c66041513ad5da39b6717e9fe8b2
MD5 ef34abccbeedfb29f69fa8c314c63f41
BLAKE2b-256 955816a074a2120ab8f6e3c16be85441feba48ea92f2e82bb01a6fd33f1f3ddd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page