Skip to main content

Fast and scalable Gaussian Processes in 1D

Project description

celerite2

celerite is an algorithm for fast and scalable Gaussian Process (GP) Regression in one dimension and this library, celerite2 is a re-write of the original celerite project to improve numerical stability and integration with various machine learning frameworks. Documentation for this version can be found here. This new implementation includes interfaces in Python and C++, with full support for PyMC (v3 and v4) and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best resource for learning about this is available for free online: Rasmussen & Williams (2006). Similarly, the celerite algorithm is restricted to a specific class of covariance functions (see the original paper for more information and a recent generalization for extensions to structured two-dimensional data). If you need scalable GPs with more general covariance functions, GPyTorch might be a good choice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celerite2-0.3.1.tar.gz (953.2 kB view details)

Uploaded Source

Built Distributions

celerite2-0.3.1-cp312-cp312-win_amd64.whl (983.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

celerite2-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (947.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

celerite2-0.3.1-cp312-cp312-macosx_11_0_arm64.whl (806.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

celerite2-0.3.1-cp312-cp312-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

celerite2-0.3.1-cp312-cp312-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.1-cp311-cp311-win_amd64.whl (987.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

celerite2-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (947.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

celerite2-0.3.1-cp311-cp311-macosx_11_0_arm64.whl (813.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

celerite2-0.3.1-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

celerite2-0.3.1-cp311-cp311-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.1-cp310-cp310-win_amd64.whl (983.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

celerite2-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (945.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

celerite2-0.3.1-cp310-cp310-macosx_11_0_arm64.whl (809.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

celerite2-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

celerite2-0.3.1-cp310-cp310-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.1-cp39-cp39-win_amd64.whl (986.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

celerite2-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (945.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

celerite2-0.3.1-cp39-cp39-macosx_11_0_arm64.whl (810.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

celerite2-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

celerite2-0.3.1-cp39-cp39-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.1-cp38-cp38-win_amd64.whl (984.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

celerite2-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (944.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

celerite2-0.3.1-cp38-cp38-macosx_11_0_arm64.whl (809.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

celerite2-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

celerite2-0.3.1-cp38-cp38-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

celerite2-0.3.1-cp37-cp37m-win_amd64.whl (985.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

celerite2-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (944.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

celerite2-0.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

celerite2-0.3.1-cp36-cp36m-win_amd64.whl (989.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

celerite2-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (944.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

celerite2-0.3.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file celerite2-0.3.1.tar.gz.

File metadata

  • Download URL: celerite2-0.3.1.tar.gz
  • Upload date:
  • Size: 953.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for celerite2-0.3.1.tar.gz
Algorithm Hash digest
SHA256 b6a7f5ca9403ae6640599bebaaafe2782b81a1653810b940f24a81988976f170
MD5 43f693baa7b601e8e4fac77f399b3099
BLAKE2b-256 fcf11b4e5eae36b4eb268f5a774ebb6de5dbde87dc2e0c675cb72958d0cdc21d

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e8fa7fdfdd9254a1cb633cbc2e914dc602aed92ab6e99ef06a65e610dbb53a2a
MD5 d73a3eae4953d44bbc3b0ddf08f341b0
BLAKE2b-256 e0ef48cbc12ebe6529aeb831f7288880f785c8ee4b63f2141532cae54af1ccf4

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb35cf65726c1e98b5f6868ab1a01c36531505e6e3403a662a8be72d5cd29bb9
MD5 e8982ab238f5069c8b288f02e796f29a
BLAKE2b-256 8a73c8924194e8249f4ae3e4694778f046956c7531cfa6c7ea2cc80afddb98d8

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dfe2f0ff9601c4faf5e1731860f83915a0df60d34d8896bda9f90dda7d0b8f67
MD5 91f99ff25bfcf3b495a8f7a4615cf2df
BLAKE2b-256 4ff7d7d6104b6de701140edc22519d3ab110ab496d7ef6facd2f2dabf490f78a

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 069e126ffee44f55d2a530deb9255aa320de4aadf3492c930d7cef445f676700
MD5 65747283eb7c484ba64b1ddad96ac72d
BLAKE2b-256 38bfc3ec520580d9bf4f55d2039b69aaed1935e9d6ae629c4467610ca4608728

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3229f1818431e7d5bacd2075949e37bd49100d04dae8e17b8636843ba9723cd4
MD5 430ec5bc2082d6212460b0da39404e34
BLAKE2b-256 76f8f4c03a9ba73a8c6c23d73f46a9cebb7b40a29d07ef31020acce82cf2a067

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 77ddacf38e0a96b380be1b705d7fc66945c99da13936d82aab09742bdf436427
MD5 74a657cf2db361edb1308f5235f047e1
BLAKE2b-256 2c173de4bc26cfe74839e458070f23904b5adab7c2c22aff47db880132c48d66

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe0f0bf092b74771660bbf1add92e7368c06d5f8da5b26c3bcc2d75832305c32
MD5 c0b0969f47f961d421a0173eef384fd2
BLAKE2b-256 3b89b12d257da16c9e7d10c5264989a89e2e135836cc311cde21fc710bc796df

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 206ec6a5829723c7453e462a498600ff42bcdd52fe472cc40297698f564482af
MD5 1eecfebc78fc26a2a33877eefee16377
BLAKE2b-256 7a7fc9ee6122d2b0eedcaf61f9b4b9edd9d178832ddaa687ea72526842c8adf1

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b99f6bd9ddd73ca0d34fa681e2c443c56e27aca3d9e711b15e727538aa1321dc
MD5 ec4864470a1d4599020b12a20962aac0
BLAKE2b-256 12ceb39eb84df7786fdd54e351e1ee7640ee2d045a25c843329430f9e93e5d6f

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c05813b36f900c1a834466e42ee4d6a64ad76d2a8ad959af4529da7ac2c45c71
MD5 f28afa4a885f73a7521a1c17db964dc5
BLAKE2b-256 58296b643d39965f6f2049d1c74d29937d7d0b92da9fae09a85d6dea7eeeb807

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ee712ed7225e3f83c279560a45b83a6b538ec4ca6c9713bc6628728316ef5b8c
MD5 18ec1186034b30fbc03570773fb8334a
BLAKE2b-256 5232008c5c3ce6e48bad132ae864c71dab92722983ca7e5eac6aa4652fe85b24

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06ce97a7bc0c065b5f3900b47b7722910aaf0069579c33dc79591541bd0e35cd
MD5 f8f01b0d72f65a6ad9eae0f9b643b591
BLAKE2b-256 591f94cd03b97bb51c34270310637673ecaa2403e88a0fe1cfb91db603f75976

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a131530964c0bbf9d5cd34644b7308f227759d66084fea241b34de9fb3addc03
MD5 b1120cfaf657f2f3f63002dcc8c1b5e9
BLAKE2b-256 be17936a8c5c74d3bdbae52614dafa28655247df797d80925a3425fd74b74caa

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8baf6216e25c47e1bf02a46a8f7eed4f87b7a70f93cc6141d7a3d68156891cb5
MD5 7cfb438eb20f5360f77bf82cb9b3a2b0
BLAKE2b-256 419fd771e06b030840024e29d5044f54288b13e3ba87d6fc9838e95fd4c49700

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bf0c185639d14a9e8d5dfcf054f98635185f585f30742d7864b9e1e0bd0b9b9d
MD5 ed5c8a35701c9da07931d5ee07ad64f4
BLAKE2b-256 8f3dd30c514617a9c434b3d6e404dc8b7386af11ee27a58c32b8f1066a454693

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 986.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for celerite2-0.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a3817bbfa3a3676febec42d377bc37e267bf9fbefa365da88ddc87c35870d0a1
MD5 e78b4dd29b824e557501b1e79f3e8b35
BLAKE2b-256 b034326bd72ef3618fba206d14b8fb444eca4ab22097548925138a26d963e0ad

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbd3814e31f7e4526c4b31ebbd5e2f200fb452b8556d3aa1a3360a44b94616c9
MD5 dabc78b3efd16c3d4df3bf6baf51947d
BLAKE2b-256 9fa5a18ebdc7dd438d9d2e4e63a86513fea284bb9d380a38f7c85ac8686dd08f

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99aea3a39c8acc28eb915893af5a1486b0b81054b341f052853e1dbf14e4a01c
MD5 0eeb0438cca9352aab3b90b25f447b93
BLAKE2b-256 1d62c9caa4fc44384340e649048d0944ab758c05ba49ad92b1af9a0d8c8d81e9

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af8091430fa4599946c42dd62efa89c5226592afd6190a8a5a1684b43ce3b887
MD5 6b7d3e0b8f2fab646ceb64b4798ff3e1
BLAKE2b-256 4e573c07915bb262d17d5393227b5e9811387d06913d710a6ab935cef250df1b

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 97cb651a75f45fb8c71e70279cf119481b12fb3ad7a0aaf751bf9bd2f4895ca9
MD5 cf6b4659af7540eb237a1df752dd6201
BLAKE2b-256 0406aa645cc6305aa0c6395424048bb1e27430809738c5a049d36a56445a0f5b

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 984.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for celerite2-0.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4ec7ddd9069d372fed39276bd101b124df424b3e53f963f786f2d21a682068e5
MD5 8329dc1e78d12ecfc2cf07b940d657a5
BLAKE2b-256 b54354dae96b8bce7cf0cdd5d7f636169ec41a2b17a9092156d17e39e03c1364

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d6447156f313af5d5d0147287918f6e4d71b4d9e13729cd5db957b0d1e1209b
MD5 c7cc3172ee832a5b3832e922d5123747
BLAKE2b-256 30f35f13ceb38fd782c084fe04bca7cc2926b3d4d9277c1f0f877602f77c6239

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 976fab76d943f8e13ce36ec734e5f90e32782b9d129f5fbb7161598802c7849a
MD5 ee26a0f4c3081cb29f5c4ad6e89db8ca
BLAKE2b-256 3051649fabb54cb46dc8633085adfc602eccd1308fba02a603b91949d6d7e771

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6fec5a274a336102c4867b159a63a543d144337bd69d09c473a3bfa23f048f6e
MD5 68689361b39e9c9b3c4f598a69bf2982
BLAKE2b-256 ad2d10911c38538f5be276821207e26a6c79a5e8031efd6cda9558b0540c6c3a

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2a02aa6920035745f828b8f1c7b6e99664f9bbb13466acdf18a7b83b2e2b73ea
MD5 c5347dcdcd629f0a3ea2df0eee6d9aca
BLAKE2b-256 a2c8a5b73346e2e3be009537a47dbcb984da6940075c0e5feb994ba8fb6b30a1

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 985.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for celerite2-0.3.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7d3250022a7a5226f6594da40afde15e52f90333d2879601550aac9df2b8ab01
MD5 4817325007e3010f3d63c44e45433055
BLAKE2b-256 289b48c191bf7ad5850d7372bd8fe605d0d7eb21c064bc6eb88ffc9340b010c5

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 554c2954eea12734f34093d05e86255dcadb81f2606d6d1c9458cb3bc6986b1c
MD5 46771ee32aeac752f2322ffe37423921
BLAKE2b-256 bc9cc7ce163fd7e958b3314e771113d410aebd70280b9a875b0b517780f1fb7c

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec0aa15f9cd9788d85d129e479124749e0bc1501c388c2197b9213578c090f71
MD5 955fabb44c167c6aa8bdc6b5fcc93c4b
BLAKE2b-256 593109005ec59c088079c121da2f629f8eaab1d6d7b9b25456438b4c95c33065

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: celerite2-0.3.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 989.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for celerite2-0.3.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 171b539eef57068d0d0e2a725d20c5f71c54d26dbc26226d7d6406d49c4590ea
MD5 1d16e90bff0b0de82e34af303dc03b53
BLAKE2b-256 d16baeabb8d68abb55ba9be951f7a1922edc033e60395ae61232a57d44688655

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7c76d12017c181ad6ca3757a40601ac4628ff93379f13392407076275f044ab
MD5 aeb9a677051da36b62fcb007506aa583
BLAKE2b-256 39aacd52f43ec839c8319e81de6693826169601a18e5c57d962b663d5ff2f8b1

See more details on using hashes here.

File details

Details for the file celerite2-0.3.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d5e865d7fccaa5229d0036381f0b8849eb0f395dbf086006e6f7122407c5224
MD5 785e1910e757e1a4905c3d3719f7f6a0
BLAKE2b-256 8a44f54f84569d938846a27b8d52964c78ce4c7631fa1993485685701f8011a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page