Skip to main content

Fast and scalable Gaussian Processes in 1D

Project description

celerite2

celerite is an algorithm for fast and scalable Gaussian Process (GP) Regression in one dimension and this library, celerite2 is a re-write of the original celerite project to improve numerical stability and integration with various machine learning frameworks. Documentation for this version can be found here. This new implementation includes interfaces in Python and C++, with full support for PyMC (v3 and v4) and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best resource for learning about this is available for free online: Rasmussen & Williams (2006). Similarly, the celerite algorithm is restricted to a specific class of covariance functions (see the original paper for more information and a recent generalization for extensions to structured two-dimensional data). If you need scalable GPs with more general covariance functions, GPyTorch might be a good choice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celerite2-0.3.2rc1.tar.gz (3.1 MB view details)

Uploaded Source

Built Distributions

celerite2-0.3.2rc1-cp312-cp312-win_amd64.whl (645.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

celerite2-0.3.2rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (640.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2rc1-cp312-cp312-macosx_11_0_arm64.whl (602.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

celerite2-0.3.2rc1-cp312-cp312-macosx_10_9_x86_64.whl (830.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

celerite2-0.3.2rc1-cp311-cp311-win_amd64.whl (645.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

celerite2-0.3.2rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (642.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2rc1-cp311-cp311-macosx_11_0_arm64.whl (604.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

celerite2-0.3.2rc1-cp311-cp311-macosx_10_9_x86_64.whl (833.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

celerite2-0.3.2rc1-cp310-cp310-win_amd64.whl (642.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

celerite2-0.3.2rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (636.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2rc1-cp310-cp310-macosx_11_0_arm64.whl (600.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

celerite2-0.3.2rc1-cp310-cp310-macosx_10_9_x86_64.whl (829.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

celerite2-0.3.2rc1-cp39-cp39-win_amd64.whl (642.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

celerite2-0.3.2rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (637.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

celerite2-0.3.2rc1-cp39-cp39-macosx_11_0_arm64.whl (601.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

celerite2-0.3.2rc1-cp39-cp39-macosx_10_9_x86_64.whl (829.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file celerite2-0.3.2rc1.tar.gz.

File metadata

  • Download URL: celerite2-0.3.2rc1.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for celerite2-0.3.2rc1.tar.gz
Algorithm Hash digest
SHA256 019c6a1721eb3532775df27977f5f01dd42cd8d797f305b9dc57638e9487b91a
MD5 55ed72ec28c32ce207aae98200176d86
BLAKE2b-256 b82d4f3bdd68c42cdaadba0b88829bf0ef02612c6c0142caa8eeea004b06e74a

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5277bb4a37b4643a49f9e45b5b8aa303dc9e6fbb41a7eeb8c670febbb2dbb3c5
MD5 64c128c3cd07cbde35c35598691a851a
BLAKE2b-256 d4e7f53a8324871e0e5708121462b46e961a3169e99ca8bdd3eaf4cfa9fbbd63

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c959af267f3f85a277dbb2811d02d28e56a098b35208943c8590da2ae5fce914
MD5 9ef6941e33652fc30e61aee1740b791c
BLAKE2b-256 6633082bb44c2e2ed7c60337e85530b549f95613d9a3351fbbadf55aee4e8166

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ffa3b6b58eb037301fdefb11751acbf3119d0b52dd4ff51276a360c794ccf5a1
MD5 4d9b1840387187f8b2596f3620f275e2
BLAKE2b-256 551267a03cbf9388fabd956872641c375a48bef52b2777f02bf75c61c8040f0f

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a0cda9494f597e7acbd3814eb46fa2a69bafd1f615fdcfdfb8c1b91c311a5034
MD5 615ef0c8fe30c049d87fde255a8b5ef7
BLAKE2b-256 a1c7764f117441455a0bed70ea048a5227ffacb9ec7cde58e7b6f5efa53ee7d6

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b41be9a5fff59b5d50cd0fd0789fe98ae50cbc838f68121d7389417232dbd20a
MD5 59d9b34ba1d1d1f465c6026192574f14
BLAKE2b-256 9295305320a2913faac3681f7f377ce538e52cb63279bd6d6ca1431e686875f0

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71a6f105b24173950b4afc056c9b2e358759a4c817519d47e2edb3d29f6cae26
MD5 68310829fedd9b8dbee47894168a64f4
BLAKE2b-256 838306398be6caa09545bbd0c481da0440e6b91a4edfed2531f7a77648712a7d

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ecc1d926c228e66caa47fa95cd40fa3b4826bebdf4e8a3d71e5637e8dfe8f1b
MD5 1622019d25fa0b7bde881b6f59e42edb
BLAKE2b-256 823e6438b40a02c4161604683cfa073fa8b0ae61bee89bcf4244ceb6fd1e098e

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f4806b78a1ef32b0ea023cfbe2ca3e4615d8e1cc2d9a4f2e3ad7582c17837b3
MD5 77c5140e2270005050efcee60b555425
BLAKE2b-256 9535b69c3f85876f396a1c001e72138597064c055bc5f3fe6d32fadd9adcb6de

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a857e233d76b27520e5f0c6e90df7a72f9babce0e9ead48ff487b607f08c44ba
MD5 68c8d5a3967f795cec98141d33c7ba62
BLAKE2b-256 d3683d130a190b284714cea1643d24afe2c5e4e2160596d330ca34c81a0621af

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26b962bfe3c986c067e7fdbb7b3326e5d658d7f09dbaf9ab39e5720bd37c1809
MD5 3dae745b7d0c1400646da69010f3eeb4
BLAKE2b-256 9b43745944253b5f1daaff29d08598afb2a81042e7aa670c1f64a4cef367d38f

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d967124e819a6ff007aa1b2b6cb5ace0d20c2f4b0fdc755c2ed12b8b0a0f535d
MD5 2dd03fe9305b944dc734ac429b7a9e1b
BLAKE2b-256 d561a3d3ef60724bcc5df7e55289a2fca53f43c0411fc3591f50afe5ac54e939

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f1c3bddb1b65f21a98f7fd2c7d82164f528e6057398fac3f06b9df42eab41f2
MD5 064e547c15789ea99ac3b4ab2c331e4c
BLAKE2b-256 04d7dc42a2414c3d03a9f5d10c39d7eb1dcf347a19c0fd3ab64e5c0601dd6502

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5e23ba4828b0ad5fa4df481105e6bfae27f01599fcde2c84a5bc3abb88f1a150
MD5 35ad7bc9e0de491231f9f6a6cc08cff3
BLAKE2b-256 41aa2597ffe92c50088a3baf33049863e3f2f8c08fc1b23974b4577ed0150378

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8dd89e0b03387bc0ee0b26400e5bfcc87bdec3dd79aeab11d1ab68611b7c80af
MD5 de0855789ec9ab7ff7dbc4eb23f49f17
BLAKE2b-256 18770364edd74eb9f9961165072272885d9c4970dc3243f104b113ff0c6ab480

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a6650d7f4a1a6deeef774f69798bb0110bba4b9859187127ba5530e0b9b5ada
MD5 9e595587e82ba2562d2f945d85979f50
BLAKE2b-256 8c40e3f294067cce008d1e9443cb89b5c3309be09df79f9fb2b8ed21d9b25316

See more details on using hashes here.

Provenance

File details

Details for the file celerite2-0.3.2rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for celerite2-0.3.2rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d00f5bedd370bb38617d39740482e790df87486b2a87dc964c92c5738e1ac918
MD5 e225bbb445dab6a5e5baa32203df04d8
BLAKE2b-256 41e3484b38c4d7ac23145962abb25e64220881887bfef6a1b2ab0169fcfb7446

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page