Skip to main content

CellRank for directed single-cell fate mapping

Project description

PyPI Bioconda Downloads CI CI-Notebooks Documentation Coverage

CellRank for directed single-cell fate mapping

https://raw.githubusercontent.com/theislab/cellrank/master/resources/images/cellrank_fate_map.png

CellRank is a toolkit to uncover cellular dynamics based on Markov state modeling of single-cell data. It contains two main modules: kernels compute cell-cell transition probabilities and estimators generate hypothesis based on these. Our kernels work with a variety of input data including RNA velocity (see La Manno et al. (2018) and Bergen et al. (2020)), cellular similarity (both transcriptomic and spatial) and pseudotime, among others. Our VelocityKernel takes into account uncertainty in the velocities and allows you to aggregate the short-range fate relations given by RNA velocity into longer trends along the phenotypic manifold. Our main estimator is Generalized Perron Cluster Cluster Analysis (G-PCCA) [GPCCA18] which coarse-grains the Markov chain into a set of macrostates which represent initial, terminal and intermediate states. For each transient cell, we compute its fate probability towards any terminal state. We show an example of such a fate map in the figure above, which has been computed using the data of pancreatic endocrinogenesis. CellRank combines kernels and estimators with a powerful plotting API, enabling you to visualize e.g. smooth gene expression trends along lineages or fate-informed circular embeddings, to name just a few.

CellRank scales to large cell numbers, is fully compatible with scanpy and scvelo and is easy to use. For installation instructions, documentation and tutorials, visit cellrank.org.

Getting started with CellRank

If you’re new to CellRank, make sure to go though the basic tutorial which introduces you to CellRank’s high-level API. Most biological systems require a bit more control, so be sure to check out the kernels and estimators tutorial which allows to unlock the full power of CellRank. If you want to see individual functions in action, visit our gallery.

Manuscript

Please see our preprint on bioRxiv to learn more.

CellRank’s key applications

  • compute initial & terminal as well as intermediate macrostates of your biological system

  • infer fate probabilities towards the terminal states for each individual cell

  • visualize gene expression trends along specific lineages while accounting for the continuous nature of fate determination

  • identify potential driver genes for each identified cellular trajectory

Installation

Install CellRank by running:

conda install -c conda-forge -c bioconda cellrank
# or with extra libraries, useful for large datasets
conda install -c conda-forge -c bioconda cellrank-krylov

or via PyPI:

pip install cellrank
# or with extra libraries, useful for large datasets
pip install 'cellrank[krylov]'
# or with external modules, see External API
pip install 'cellrank[external]'

Why is it called “CellRank”?

CellRank does not rank cells, we gave the package this name because just like Google’s original PageRank algorithm, it works with Markov chains to aggregate relationships between individual objects (cells vs. websites) to learn about more global properties of the underlying dynamics (initial & terminal states and fate probabilities vs. website relevance).

Support

We welcome your feedback! Feel free to open an issue, send us an email or tweet if you encounter a bug, need our help or just want to make a comment/suggestion.

Contributing

We actively encourage any contribution! To get started, please check out both the contribution guide as well as the external API. CellRank’s modular structure makes it easy to contribute, be it a new method to compute cell-cell transition probabilities (kernels), a new way to analyze a transition matrix (estimators) or an addition to the plotting API. If you’re thinking of contributing a new kernel, we have a kernel tutorial that guides you trough the process.

CellRank was developed in collaboration between the Theislab and the Peerlab.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellrank-1.4.0.tar.gz (287.0 kB view details)

Uploaded Source

Built Distribution

cellrank-1.4.0-py3-none-any.whl (243.6 kB view details)

Uploaded Python 3

File details

Details for the file cellrank-1.4.0.tar.gz.

File metadata

  • Download URL: cellrank-1.4.0.tar.gz
  • Upload date:
  • Size: 287.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.6

File hashes

Hashes for cellrank-1.4.0.tar.gz
Algorithm Hash digest
SHA256 957fd9b135ad7c1a43ff34c071cab4ee9290dfbcd663792d59eb544581f24634
MD5 2eb14f2198fea2581378a24e1c871f94
BLAKE2b-256 1173c5c65b6b543ad66cc23ad728e7ba148aaf00dca31004a6e7cf0a0aaf11b6

See more details on using hashes here.

File details

Details for the file cellrank-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: cellrank-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 243.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.6

File hashes

Hashes for cellrank-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e5a51a81b4319071dc1e707a45e2b96d0ffe5484d97cd4d91fbc915a7311e77
MD5 cf59ed35023ed810be42d5563bd3739e
BLAKE2b-256 696bf6adc88ffa140c6d74f72d0780c1b0d6ccff01e6b522d482f785a822783b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page