Skip to main content

Setup and manage a Apache Spark cluster in EC2

Project description

The CGCloud plugin for Spark lets you setup a fully configured Apache Spark cluster in EC2 in just minutes, regardless of the number of nodes. While Apache Spark already comes with a script called spark-ec2 that lets you build a cluster in EC2, CGCloud Spark differs from spark-ec2 in the following ways:

  • Tachyon or Yarn are not included

  • Setup time does not scale linearly with the number of nodes. Setting up a 100 node cluster takes just as long as setting up a 10 node cluster (2-3 min, as opposed to 45min with spark-ec2). This is made possible by baking all required software into a single AMI. All slave nodes boot up concurrently and join the cluster autonomously in just a few minutes.

  • Unlike with spark-ec2, the cluster can be stopped and started via the EC2 API or the EC2 console, without involvement of cgcloud.

  • The Spark services (master and worker) run as an unprivileged user, not root as with spark-ec2. Ditto for the HDFS services (namenode, datanode and secondarynamenode).

  • The Spark and Hadoop services are started automatically as the instance boots up, via a regular init script.

  • Nodes can be added easily, simply by booting up new instances from the AMI. They will join the cluster automatically. HDFS may have to be rebalanced after that.

  • You can customize the AMI that cluster nodes boot from by subclassing the SparkMaster and SparkSlave classes.

  • CGCloud Spark uses the CGCLoud Agent which takes care of maintaining a list of authorized keypairs on each node.

  • CGCloud Spark is based on the official Ubuntu Trusty 14.04 LTS, not the Amazon Linux AMI.

Prerequisites

The cgcloud-spark package requires that the cgcloud-core package and its prerequisites are present.

Installation

Read the entire section before pasting any commands and ensure that all prerequisites are installed. It is recommended to install this plugin into the virtualenv you created for CGCloud:

source ~/cgcloud/bin/activate
pip install cgcloud-spark

If you get DistributionNotFound: No distributions matching the version for cgcloud-spark, try running pip install --pre cgcloud-spark.

Be sure to configure cgcloud-core before proceeding.

Configuration

Modify your .profile or .bash_profile by adding the following line:

export CGCLOUD_PLUGINS="cgcloud.spark:$CGCLOUD_PLUGINS"

Login and out (or, on OS X, start a new Terminal tab/window).

Verify the installation by running:

cgcloud list-roles

The output should include the spark-box role.

Usage

Create a single t2.micro box to serve as the template for the cluster nodes:

cgcloud create -IT spark-box

The I option stops the box once it is fully set up and takes an image (AMI) of it. The T option terminates the box after that.

Now create a cluster by booting a master and the slaves from that AMI:

cgcloud create-cluster spark -s 2 -t m3.large

This will launch a master and two slaves using the m3.large instance type.

SSH into the master:

cgcloud ssh spark-master

… or the first slave:

cgcloud ssh -o 0 spark-slave

… or the second slave:

cgcloud ssh -o 1 spark-slave

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cgcloud-spark-1.4a1.dev286.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

cgcloud_spark-1.4a1.dev286-py2.7.egg (24.0 kB view details)

Uploaded Source

File details

Details for the file cgcloud-spark-1.4a1.dev286.tar.gz.

File metadata

File hashes

Hashes for cgcloud-spark-1.4a1.dev286.tar.gz
Algorithm Hash digest
SHA256 36006656b1c33d345bc170c2821df474d0bd29745841c41f31060432f5a805e2
MD5 b3023ce54ed0e8b8ce30d49868666327
BLAKE2b-256 34af41ee6e3057199307cc117d2094854ef7e4365f7fb532a7543888ec05b87b

See more details on using hashes here.

Provenance

File details

Details for the file cgcloud_spark-1.4a1.dev286-py2.7.egg.

File metadata

File hashes

Hashes for cgcloud_spark-1.4a1.dev286-py2.7.egg
Algorithm Hash digest
SHA256 0c84198067634df496d7765bd24861e17a7e3bfd694568e2757bf78ce3a50c9a
MD5 db16bd18f6f3bc7801ece3c20db490d8
BLAKE2b-256 8c7652302e441f79705f8751ef733d9b2c21c03437b8bce8cd36b20b966af40b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page