Skip to main content

Python bindings of the gems segmentation package.

Project description

charm-gems

PyPI version Linux Build MacOS Build Windows Build

This repository contains the gems C++ code and python bindings used in Freesurfer's Sequence-Adaptive Multimodal SEGmentation (SAMSEG) (Puonti et al., NeuroImage, 2016) and in SimNIBS 4.0 Complete Head Anatomy Reconstruction Method (CHARM) (Puonti et al., NeuroImage, 2020) to create individualized head models for electric field simulations.

Installation

The compiled charm-gems library is available via pip ≥ 19.3, for python 3.6, 3.7 and 3.8

pip install --upgrade pip
pip install charm-gems

Afterwards the package can be imported by calling

import charm_gems as gems

Manual Installation

Requirements

Preparation

This repository uses submodules. To start it, use

git submodule init
git submodule update

Linux/MacOS

  1. Build ITK
mkdir ITK-build
cd ITK-build
cmake \
    -DBUILD_SHARED_LIBS=OFF \
    -DBUILD_TESTING=OFF \
    -DBUILD_EXAMPLES=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=../ITK-install \
    ../ITK
make install
cd ..
  1. Install charm-gems
ITK_DIR=ITK-install python setup.py install

Windows (Tested on Visual Studio 2019)

  1. Build ITK
md ITK-build
cd ITK-build
cmake.exe ^
    -DBUILD_SHARED_LIBS=OFF ^
    -DBUILD_TESTING=OFF ^
    -DBUILD_EXAMPLES=OFF ^
    -DCMAKE_BUILD_TYPE=Release ^
    -DCMAKE_INSTALL_PREFIX=..\ITK-install ^
    ..\ITK
cmake --build . --config Release --target Install
cd ..
  1. Install charm-gems
set ITK_DIR=ITK-install
python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

charm_gems-0.5.1-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

charm_gems-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

charm_gems-0.5.1-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

charm_gems-0.5.1-cp37-cp37m-manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m

charm_gems-0.5.1-cp37-cp37m-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

charm_gems-0.5.1-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

charm_gems-0.5.1-cp36-cp36m-manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m

charm_gems-0.5.1-cp36-cp36m-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file charm_gems-0.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ca83abb32ccc5e96a4ba4f192671ab50f67cd4d35b348da050c5b2cca93f52f7
MD5 905d5eed448138dc53f2be1ff27b3e32
BLAKE2b-256 bf5cf5aa6c7ac28ce54ca752479d4fcab8314583c18447d418a1f4df4fa3cca1

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b30bf69730ed49b5d40f002b18328eb0821ca8066a36203bd53015c6f26b947
MD5 7dfa53181d1ab315e476e36bc2d22faf
BLAKE2b-256 493835981d3f56bd9e2fba22bc26fa8b2c2d3ad27ecefdfc49c5dadba3003275

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c825f01eb8d47c93416ba3112cc5c9667fdfeba022f9943aaf91a29040228852
MD5 63cacb2f4508469f1a029e268adf772d
BLAKE2b-256 16135782b360e9bb4eaad7739b09dbf55e0af7901113a7143f8fe51c324be981

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2559daff19bee1afdd747680fba68fdc792ebf8b4e4b44d62cf474af2c2e241e
MD5 277263f80b76a19e3dfd4ec1b426cf39
BLAKE2b-256 c899c262a93aebb7b4afaecf4389cfb731f8845afc09b377e0fded32b3a46e91

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e8af9395120ef488b904494b2438d894b1664b15b9ea6c5e0aa2573e06ec0e5
MD5 82ec8047ddfaedd94831fc1beae33786
BLAKE2b-256 5b96580ace0b678dce12da34a30729d743c0c359ebf5c090099b23321ea1df3e

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b9ce0f24a864a0e775ada2b351e6f882af1219510f17f3598c6510e25e1e1ea
MD5 bdf3571ac361cacfaab3dfc774ae0c52
BLAKE2b-256 f576392758bd9e8bc03e193a7bd2be5e34b5b177150617d1c5b84372fed8476a

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3db979585b79ee213300deb8b7aabcaa698f2bb5a2422fb6f6d2d7bbda462b34
MD5 e19842645ff2dda58cfe20cfbd667658
BLAKE2b-256 887e1598d861c9005cad611113bdec9cb158f60f795728953ca6f95012fb6892

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f59a7f27e9a80b2ba19c97d800e020d13a7ed0503a816a7a2fb67eeca48f1a18
MD5 ea2ed26c45781172409be75201c3ae53
BLAKE2b-256 9f122b206e5effc19c3dd13f6c54de45e30c9457a3dab96bbfff483f895f0aa1

See more details on using hashes here.

File details

Details for the file charm_gems-0.5.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-0.5.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for charm_gems-0.5.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 323e2ae84f31f3b72e143efc2f9cb63104fb68f5b62df766ed462fbe6b9cd01d
MD5 cb1936e96a7d031d1bdb4e9e8c103c64
BLAKE2b-256 2d2b54f5ffe01a000279f6129496b01f73edec1783c285f93f3ab6ebed30bb65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page