Skip to main content

Python bindings of the gems segmentation package.

Project description

charm-gems

PyPI version Linux Build MacOS Build Windows Build

This repository contains the gems C++ code and python bindings used in Freesurfer's Sequence-Adaptive Multimodal SEGmentation (SAMSEG) (Puonti et al., NeuroImage, 2016) and in SimNIBS 4.0 Complete Head Anatomy Reconstruction Method (CHARM) (Puonti et al., NeuroImage, 2020) to create individualized head models for electric field simulations.

Installation

The compiled charm-gems library is available via pip ≥ 19.3, for python 3.6, 3.7 and 3.8

pip install --upgrade pip
pip install charm-gems

Afterwards the package can be imported by calling

import charm_gems as gems

Manual Installation

Requirements

Preparation

This repository uses submodules. To start it, use

git submodule init
git submodule update

Linux/MacOS

  1. Build ITK
mkdir ITK-build
cd ITK-build
cmake \
    -DBUILD_SHARED_LIBS=OFF \
    -DBUILD_TESTING=OFF \
    -DBUILD_EXAMPLES=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=../ITK-install \
    ../ITK
make install
cd ..
  1. Install charm-gems
ITK_DIR=ITK-install python setup.py install

Windows (Tested on Visual Studio 2019)

  1. Build ITK
md ITK-build
cd ITK-build
cmake.exe ^
    -DBUILD_SHARED_LIBS=OFF ^
    -DBUILD_TESTING=OFF ^
    -DBUILD_EXAMPLES=OFF ^
    -DCMAKE_BUILD_TYPE=Release ^
    -DCMAKE_INSTALL_PREFIX=..\ITK-install ^
    ..\ITK
cmake --build . --config Release --target Install
cd ..
  1. Install charm-gems
set ITK_DIR=ITK-install
python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

charm_gems-1.0-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

charm_gems-1.0-cp38-cp38-manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.8

charm_gems-1.0-cp38-cp38-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

charm_gems-1.0-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

charm_gems-1.0-cp37-cp37m-manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.7m

charm_gems-1.0-cp37-cp37m-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

charm_gems-1.0-cp36-cp36m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

charm_gems-1.0-cp36-cp36m-manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m

charm_gems-1.0-cp36-cp36m-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file charm_gems-1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for charm_gems-1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ae1de2e9081a3967970ab1c664ae61f7f87b9eacccb61d7ea0f3de13771b690f
MD5 b71fcfd28ea29efb047c264fe222785b
BLAKE2b-256 27c0b726da7d92e0297a19e4ea36d2ccd7813c64b234185fcb32165ac3b6cf1d

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for charm_gems-1.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8db8f58383eb19792725e8b28713ca99f230c7acfde9e7bc48bbcb4a1d463d23
MD5 d25e3a517a3418a8635735ad5a50b065
BLAKE2b-256 1c53b8cfa8f864f8d2b0f37cbc95557361f57d8b381de1d44601286982468923

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.3

File hashes

Hashes for charm_gems-1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3316abb301c20fae67836cabca0b4fddf82cd05b93776fde9f6fb1edb9241eb
MD5 140880a61fa418531bfe5a0c3e6f5ebc
BLAKE2b-256 0a60b2984afd0ce3b0107184e5e751f9474006ff32b1b1c34b5cda9288868702

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for charm_gems-1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d315a984ff3c8a432a53dc387dfe840a4e45390dd7c2b1e8015474b6748a52c6
MD5 3348c9f5e1bdecd6e427f308a5b23abe
BLAKE2b-256 7bc8f8fded928679b6cc96f7f9839a5062db2fefeeb6e9f06ff5eb800849a737

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for charm_gems-1.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b15aa21b3dc37023bf6d3adb7f755863c25aa553ae80cfc57f6ea75b69918590
MD5 15a941547b674e915fb79eb57f682cfb
BLAKE2b-256 54cec564019502cd2f903165ba11db9bee3facbb66c8fa24df2a635139aac73c

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.3

File hashes

Hashes for charm_gems-1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24e7281c60f77900db992d034d07435c26c67f19e1106b768a84e4183e059b20
MD5 eee96cfd0ad0463da69f2bbb674d97c2
BLAKE2b-256 522f5860e51eff1bd06aa9321823c1d71bcebf8f7c724b8717437bac3b169113

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for charm_gems-1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a2a8d2619b11fd47a63c8f51cfc902221dc16bfe5b0499b2deb05cf3f718c9eb
MD5 50accc41b1c48523084aa54f87338000
BLAKE2b-256 cba8190c6d64c760d36be2e7dadd9f88faf91c23b4724924759e04085fc56d50

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for charm_gems-1.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80a882dada38c4ca8db9aa26033372e549001aadb692c7f702d2e0a399ee7267
MD5 e48d16f2c553505874f9e3f545617da7
BLAKE2b-256 1425349a8c9ec4942adce03830e86743ba548afa53945a513830d2998123adbb

See more details on using hashes here.

File details

Details for the file charm_gems-1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.3

File hashes

Hashes for charm_gems-1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ce86ad15b8ee7d3e76b2fe92bfb4e2465619dbcdfebe0b5641f7756cd65c40d
MD5 54e106a3af7f658a5850037c8235afa9
BLAKE2b-256 2c34122ec2d9aa2b4e7f3ef606f5d2706d49149b17d545e845f2ff941f27fd20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page