Skip to main content

Python bindings of the gems segmentation package.

Project description

charm-gems

PyPI version Linux Build MacOS Build Windows Build

This repository contains the gems C++ code and python bindings used in Freesurfer's Sequence-Adaptive Multimodal SEGmentation (SAMSEG) (Puonti et al., NeuroImage, 2016) and in SimNIBS 4.0 Complete Head Anatomy Reconstruction Method (CHARM) (Puonti et al., NeuroImage, 2020) to create individualized head models for electric field simulations.

Installation

The compiled charm-gems library is available via pip ≥ 19.3, for python 3.6, 3.7 and 3.8

pip install --upgrade pip
pip install charm-gems

Afterwards the package can be imported by calling

import charm_gems as gems

Manual Installation

Requirements

Preparation

This repository uses submodules. To start it, use

git submodule init
git submodule update

Linux/MacOS

  1. Build ITK
mkdir ITK-build
cd ITK-build
cmake \
    -DBUILD_SHARED_LIBS=OFF \
    -DBUILD_TESTING=OFF \
    -DBUILD_EXAMPLES=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=../ITK-install \
    ../ITK
make install
cd ..
  1. Install charm-gems
ITK_DIR=ITK-install python setup.py install

Windows (Tested on Visual Studio 2019)

  1. Build ITK
md ITK-build
cd ITK-build
cmake.exe ^
    -DBUILD_SHARED_LIBS=OFF ^
    -DBUILD_TESTING=OFF ^
    -DBUILD_EXAMPLES=OFF ^
    -DCMAKE_BUILD_TYPE=Release ^
    -DCMAKE_INSTALL_PREFIX=..\ITK-install ^
    ..\ITK
cmake --build . --config Release --target Install
cd ..
  1. Install charm-gems
set ITK_DIR=ITK-install
python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

charm_gems-1.0.5-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

charm_gems-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

charm_gems-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

charm_gems-1.0.5-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

charm_gems-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

charm_gems-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

charm_gems-1.0.5-cp36-cp36m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

charm_gems-1.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

charm_gems-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file charm_gems-1.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: charm_gems-1.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for charm_gems-1.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b18b75a91a9c7f015805788ab49401c09558f14f76d8de0de1a33c690517621e
MD5 f2cfdc446a3c31b16235b37117af406c
BLAKE2b-256 2fbffd5a0f554ceffd6f481f8e05633a8e960ccd017e8373b109e9d981c7f3cc

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm_gems-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0352a43373ec81c607a8e13d3f61d65c12d6688161cde6a93fe3286eb9f2be41
MD5 2aef0cfee0245aed6070890535cd1def
BLAKE2b-256 505ab1d1578d22be31077e47c1d8875a72fc49a232f1b80922234ec17783bdc2

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.3

File hashes

Hashes for charm_gems-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e84aff394f3ec8adeeffd29e15c07078af7adbd81c87e4e2e164fc7d7457868d
MD5 419b7e947ac11a3efc47d1b59829813f
BLAKE2b-256 761640930fbd3392a28b542aa855a8af3dc4ba340b0b67fa4b274418d45ed697

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: charm_gems-1.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for charm_gems-1.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b50e3c3ec97dbe18280ee8964dccafd649321ec9a2a4576a5cdfafdd87d7a70b
MD5 f7aee429e28372a2eb6d74f370aa566c
BLAKE2b-256 642b4c2b5c99d04992514d95ea66a8711f723d1df7f81df137fe81facde4be77

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm_gems-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9704a4f951edc8d31f1ad153b0912f3cbeac1420fd5cde31c88dbe177f748ecb
MD5 b9642285500ee4c7cdbc8e742c3ed2c4
BLAKE2b-256 1aae0a488c7c3aa87b7e75b6cd8821325c38ecc4e5f4c975e9b52bbc39f84ad7

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.3

File hashes

Hashes for charm_gems-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c23d20d462acd324380555832c5810e13f8bc2197e0b867897d5ad22b04c4045
MD5 8414ee41c5521d0ba01da40461a1f23a
BLAKE2b-256 e2b13e021ea05cc187829ba0a63dfc729cb7bdd341f5fd0d9516f0ad033e9b05

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: charm_gems-1.0.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for charm_gems-1.0.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5fbc9bcf4fddc6ee40c1f9448e9fb0cca72ac35c631436d98ffa37434651223f
MD5 fa826445a48b95c22b6998097eabda07
BLAKE2b-256 e5b9ef5f6325fd1bdf63b8e569433cf93479ef52625142ea3084600b163fda68

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for charm_gems-1.0.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58a808694034549967e06b904e6e4bc567f183dd7b23bcd8d61afba8b787490f
MD5 608202e96f44472d8037ddc54e7440ef
BLAKE2b-256 1e2e43920d755bf142f34893f9808af75a978e262d12d7a66c66f12a8b5440a9

See more details on using hashes here.

File details

Details for the file charm_gems-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: charm_gems-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.3

File hashes

Hashes for charm_gems-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c818afa3db1e38003d3d551e382796b7ff5dcae29fa980cc56de91fb2ef17c00
MD5 e68c298432fedf5141b77fc71cd601bd
BLAKE2b-256 b310d3e3ee063a6c9b58c99e4ceb1afab620794e1cdb4a6d5ba2b16bbd9d3832

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page