Skip to main content

Chex: Testing made fun, in JAX!

Project description

Chex

Chex is a library of utilities for helping to write reliable JAX code.

This includes utils to help:

  • Instrument your code (e.g. assertions)
  • Debug (e.g. transforming pmaps in vmaps within a context manager).
  • Test JAX code across many variants (e.g. jitted vs non-jitted).

Installation

Chex can be installed with pip directly from github, with the following command:

pip install git+git://github.com/deepmind/chex.git

Modules Overview

Assertions (asserts.py)

One limitation of PyType annotations for JAX is that they do not support the specification of DeviceArray ranks, shapes or dtypes. Chex includes a number of functions that allow flexible and concise specification of these properties.

E.g. suppose you want to ensure that all tensors t1, t2, t3 have the same shape, and that tensors t4, t5 have rank 2 and (3 or 4), respectively.

chex.assert_equal_shape([t1, t2, t3])
chex.assert_rank([t4, t5], [2, {3, 4}])

More examples:

from chex import assert_shape, assert_rank, ...

assert_shape(x, (2, 3))                # x has shape (2, 3)
assert_shape([x, y], [(), (2,3)])      # x is scalar and y has shape (2, 3)

assert_rank(x, 0)                      # x is scalar
assert_rank([x, y], [0, 2])            # x is scalar and y is a rank-2 array
assert_rank([x, y], {0, 2})            # x and y are scalar OR rank-2 arrays

assert_type(x, int)                    # x has type `int` (x can be an array)
assert_type([x, y], [int, float])      # x has type `int` and y has type `float`

assert_equal_shape([x, y, z])          # x, y, and z have equal shapes

assert_tree_all_close(tree_x, tree_y)  # values and structure of trees match
assert_tree_all_finite(tree_x)         # all tree_x leaves are finite

assert_devices_available(2, 'gpu')     # 2 GPUs available
assert_tpu_available()                 # at least 1 TPU available

assert_numerical_grads(f, (x, y), j)   # f^{(j)}(x, y) matches numerical grads

See documentation of asserts.py for details on all supported assertions.

Dataclass (dataclass.py)

JAX-friendly dataclass implementation reusing python dataclasses.

Chex implementation of dataclass registers dataclasses as internal PyTree nodes to ensure compatibility with JAX data structures.

Fakes (fake.py)

Debugging in JAX is made more difficult by code transformations such as jit and pmap, which introduce optimizations that make code hard to inspect and trace. It can also be difficult to disable those transformations during debugging as they can be called at several places in the underlying code. Chex provides tools to globally replace jax.jit with a no-op transformation and jax.pmap with a (non-parallel) jax.vmap, in order to more easily debug code in a single-device context.

For example, you can use Chex to fake pmap and have it replaced with a vmap. This can be achieved by wrapping your code with a context manager:

with chex.fake_pmap(enable_patching=True):
  @jax.pmap
  def fn(inputs):
    ...

  # Function will be vmapped over inputs
  fn(inputs)

The same functionality can also be invoked with start and stop:

fake_pmap = chex.fake_pmap(enable_patching=True)
fake_pmap.start()
... your jax code ...
fake_pmap.stop()

In addition, you can fake a real multi-device test environment with a multi-threaded CPU. See section Faking multi-device test environments for more details.

See documentation in fake.py and examples in fake_test.py for more details.

Test variants (variants.py)

JAX relies extensively on code transformation and compilation, meaning that it can be hard to ensure that code is properly tested. For instance, just testing a python function using JAX code will not cover the actual code path that is executed when jitted, and that path will also differ whether the code is jitted for CPU, GPU, or TPU. This has been a source of obscure and hard to catch bugs where XLA changes would lead to undesirable behaviours that however only manifest in one specific code transformation.

Variants make it easy to ensure that unit tests cover different ‘variations’ of a function, by providing a simple decorator that can be used to repeat any test under all (or a subset) of the relevant code transformations.

E.g. suppose you want to test the output of a function fn with or without jit. You can use chex.variants to run the test with both the jitted and non-jitted version of the function by simply decorating a test method with @chex.variants, and then using self.variant(fn) in place of fn in the body of the test.

def fn(x, y):
  return x + y
...

class ExampleTest(chex.TestCase):

  @chex.variants(with_jit=True, without_jit=True)
  def test(self):
    var_fn = self.variant(fn)
    self.assertEqual(fn(1, 2), 3)
    self.assertEqual(var_fn(1, 2), fn(1, 2))

If you define the function in the test method, you may also use self.variant as a decorator in the function definition. For example:

class ExampleTest(chex.TestCase):

  @chex.variants(with_jit=True, without_jit=True)
  def test(self):
    @self.variant
    def var_fn(x, y):
       return x + y

    self.assertEqual(var_fn(1, 2), 3)

Example of parameterized test:

from absl.testing import parameterized

# Could also be:
#  `class ExampleParameterizedTest(chex.TestCase, parameterized.TestCase):`
#  `class ExampleParameterizedTest(chex.TestCase):`
class ExampleParameterizedTest(parameterized.TestCase):

  @chex.variants(with_jit=True, without_jit=True)
  @parameterized.named_parameters(
      ('case_positive', 1, 2, 3),
      ('case_negative', -1, -2, -3),
  )
  def test(self, arg_1, arg_2, expected):
    @self.variant
    def var_fn(x, y):
       return x + y

    self.assertEqual(var_fn(arg_1, arg_2), expected)

Chex currently supports the following variants:

  • with_jit -- applies jax.jit() transformation to the function.
  • without_jit -- uses the function as is, i.e. identity transformation.
  • with_device -- places all arguments (except specified in ignore_argnums argument) into device memory before applying the function.
  • without_device -- places all arguments in RAM before applying the function.
  • with_pmap -- applies jax.pmap() transformation to the function (see notes below).

See documentation in variants.py for more details on the supported variants. More examples can be found in variants_test.py.

Variants notes

  • Test classes that use @chex.variants must inherit from chex.TestCase (or any other base class that unrolls tests generators within TestCase, e.g. absl.testing.parameterized.TestCase).

  • [jax.vmap] All variants can be applied to a vmapped function; please see an example in variants_test.py (test_vmapped_fn_named_params and test_pmap_vmapped_fn).

  • [@chex.all_variants] You can get all supported variants by using the decorator @chex.all_variants.

  • [with_pmap variant] jax.pmap(fn) (doc) performs parallel map of fn onto multiple devices. Since most tests run in a single-device environment (i.e. having access to a single CPU or GPU), in which case jax.pmap is a functional equivalent to jax.jit, with_pmap variant is skipped by default (although it works fine with a single device). Below we describe a way to properly test fn if it is supposed to be used in multi-device environments (TPUs or multiple CPUs/GPUs). To disable skipping with_pmap variants in case of a single device, add --chex_skip_pmap_variant_if_single_device=false to your test command.

Faking multi-device test environments

In situations where you do not have easy access to multiple devices, you can still test parallel computation using single-device multi-threading.

In particular, one can force XLA to use a single CPU's threads as separate devices, i.e. to fake a real multi-device environment with a multi-threaded one. These two options are theoretically equivalent from XLA perspective because they expose the same interface and use identical abstractions.

Chex has a flag chex_n_cpu_devices that specifies a number of CPU threads to use as XLA devices.

To set up a multi-threaded XLA environment for absl tests, define setUpModule function in your test module:

def setUpModule():
  chex.set_n_cpu_devices()

Now you can launch your test with python test.py --chex_n_cpu_devices=N to run it in multi-device regime. Note that all tests within a module will have an access to N devices.

More examples can be found in variants_test.py, fake_test.py and fake_set_n_cpu_devices_test.py.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chex-0.0.1.tar.gz (29.6 kB view details)

Uploaded Source

Built Distribution

chex-0.0.1-py3-none-any.whl (36.7 kB view details)

Uploaded Python 3

File details

Details for the file chex-0.0.1.tar.gz.

File metadata

  • Download URL: chex-0.0.1.tar.gz
  • Upload date:
  • Size: 29.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for chex-0.0.1.tar.gz
Algorithm Hash digest
SHA256 1ff9aa6b7ed4e5887c2e04b6ff30c027b8ccdc480dfc2648ace0fa1f66808f0f
MD5 615238eb288bc54c8a021010d6bb5430
BLAKE2b-256 0af17138d43475355c72d185305fb71d214c460d1a8ed2781410fc57aba73372

See more details on using hashes here.

Provenance

File details

Details for the file chex-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: chex-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 36.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for chex-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3263239bf3dece80788231496a1bed196f9fd2535b935572db07c1f809caed09
MD5 e60915003b4f10a57d5bc331a77ebe65
BLAKE2b-256 0663936d7286c5300547e4058f076127af56daf85eb3a83bf580ce8f1130103a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page