Skip to main content

A utilities library for osu!. Provides support for parsing replays from a file or from the api, as well as support for unstable rate, hits, similarity, and frametime calculations.

Project description

logo

PyPi version

Circlecore (documentation)

Circlecore is a utilities library for osu!. Features include:

  • Unstable Rate calculation
  • Judgments calculation (classifying all hitobjects into misses, hit300s, hit100s, hit50s, or sliderbreaks)
  • Similarity calculation between two replays, for replay stealing detection
  • Frametime calculation, for timewarp detection
  • Jerky, suspicious movement detection (called Snaps)

Circlecore is used by Circleguard, a replay analysis tool.

Circlecore is developed and maintained by:

Installation

Circlecore can be installed from pip:

pip install circleguard

This documentation refers to the project as circlecore to differentiate it from our organization Circleguard and the replay analysis tool Circleguard. However, circlecore is installed from pypi with the name circleguard, and is imported as such in code (import circleguard).

Links

Github: https://github.com/circleguard/circlecore
Documentation: https://circleguard.github.io/circlecore/
Discord: https://discord.gg/VNnkTjm

Usage

We have a full tutorial and documentation at https://circleguard.github.io/circlecore/. If you really want to jump right in, below is a quickstart guide:

from circleguard import *

# replace "key" with your api key
cg = Circleguard("key")
# replay on http://osu.ppy.sh/b/221777 by http://osu.ppy.sh/u/2757689
replay = ReplayMap(221777, 2757689)

print(cg.ur(replay)) # unstable rate
print(cg.frametime(replay)) # average frametime
print(cg.frametimes(replay)) # full frametime list
print(cg.hits(replay)) # where the replay hits hitobjects
print(cg.snaps(replay)) # any jerky/suspicious movement

replay2 = ReplayMap(221777, 4196808)
print(cg.similarity(replay, replay2)) # how similar the replays are

# ReplayMap isn't the only way to represent replays; we can also
# get a beatmap's top 3 plays
map_ = cg.Map(221777, span="1-3")
# or a User's fifteenth and twentieth best plays
user = cg.User(124493, span="15, 20")
# or a local replay
replay3 = ReplayPath("/path/to/local/osr/replay.osr")
# and more. You can find them all at
# https://circleguard.github.io/circlecore/appendix.html#circleguard.loadables.Loadable

# maps and users can be iterated over
for r in map_:
    print(cg.ur(r))

Contributing

Join our discord and ask how you can help, or look around for open issues which interest you and tackle those. Pull requests are welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

circleguard-5.2.5.tar.gz (51.8 kB view details)

Uploaded Source

Built Distribution

circleguard-5.2.5-py3-none-any.whl (69.5 kB view details)

Uploaded Python 3

File details

Details for the file circleguard-5.2.5.tar.gz.

File metadata

  • Download URL: circleguard-5.2.5.tar.gz
  • Upload date:
  • Size: 51.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.0

File hashes

Hashes for circleguard-5.2.5.tar.gz
Algorithm Hash digest
SHA256 6246437a5a5342d1fb0161d7e8f4b5fa1c24564170b5373c47751da25df80f5f
MD5 483a8f19fc6bd686320f9821c57ded63
BLAKE2b-256 12b72b6b7629a5f71394b9d5c2643427d431528834cc3a704b9a3847be555095

See more details on using hashes here.

File details

Details for the file circleguard-5.2.5-py3-none-any.whl.

File metadata

  • Download URL: circleguard-5.2.5-py3-none-any.whl
  • Upload date:
  • Size: 69.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.0

File hashes

Hashes for circleguard-5.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 8aa1d98f11835472d63fdcdbbc21815dd7929c5577f3e906c6c4714873efff85
MD5 8032ec456ee0404ced2406cf50c394d7
BLAKE2b-256 801718ccaec2ef2f56378154ed164855c5718ac233e41c94ec4846d2ae990331

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page