Skip to main content

Smart, pythonic, ad-hoc, typed polymorphism for Python

Project description

classes

classes logo


Build Status codecov Documentation Status Python Version wemake-python-styleguide Telegram chat


Smart, pythonic, ad-hoc, typed polymorphism for Python.

Features

  • Provides a bunch of primitives to write declarative business logic
  • Enforces better architecture
  • Fully typed with annotations and checked with mypy, PEP561 compatible
  • Allows to write a lot of simple code without inheritance or interfaces
  • Pythonic and pleasant to write and to read (!)
  • Easy to start: has lots of docs, tests, and tutorials

Installation

pip install classes

You also need to configure mypy correctly and install our plugin:

# In setup.cfg or mypy.ini:
[mypy]
plugins =
  classes.contrib.mypy.classes_plugin

Without this step, your project will report type-violations here and there.

We also recommend to use the same mypy settings we use.

Make sure you know how to get started, check out our docs!

Example

Imagine, that you want to bound implementation to some particular type. Like, strings behave like this, numbers behave like that, and so on.

The good realworld example is djangorestframework. It is build around the idea that different data types should be converted differently to and from json format.

What is the "traditional" (or outdated if you will!) approach? To create tons of classes for different data types and use them.

That's how we end up with classes like so:

class IntField(Field):
    def from_json(self, value):
        return value

    def to_json(self, value):
        return value

It literally has a lot of problems:

  • It is hard to type this code. How can I be sure that my json is parseable by the given schema?
  • It produces a lot of boilerplate
  • It has complex API: there are usually several methods to override, some fields to adjust. Moreover, we use a class, not a simple function
  • It is hard to extend the default library for new custom types you will have in your own project
  • It is hard to override

There should be a better way of solving this problem! And typeclasses are a better way!

How would new API look like with this concept?

>>> from typing import Union
>>> from classes import typeclass

>>> @typeclass
... def to_json(instance) -> str:
...     """This is a typeclass definition to convert things to json."""

>>> @to_json.instance(int)
... @to_json.instance(float)
... def _to_json_int(instance: Union[int, float]) -> str:
...     return str(instance)

>>> @to_json.instance(bool)
... def _to_json_bool(instance: bool) -> str:
...     return 'true' if instance else 'false'

>>> @to_json.instance(list)
... def _to_json_list(instance: list) -> str:
...     return '[{0}]'.format(
...         ', '.join(to_json(list_item) for list_item in instance),
...     )

See how easy it is to works with types and implementation?

Typeclass is represented as a regular function, so you can use it like one:

>>> to_json(True)
'true'
>>> to_json(1)
'1'
>>> to_json([False, 1, 2.5])
'[false, 1, 2.5]'

And it easy to extend this typeclass with your own classes as well:

# Pretending to import the existing library from somewhere:
# from to_json import to_json

>>> import datetime as dt

>>> @to_json.instance(dt.datetime)
... def _to_json_datetime(instance: dt.datetime) -> str:
...     return instance.isoformat()
...
>>> to_json(dt.datetime(2019, 10, 31, 12, 28, 00))
'2019-10-31T12:28:00'

That's how simple, safe, and powerful typeclasses are! Make sure to check out our full docs to learn more.

More!

Want more? Go to the docs! Or read these articles:

— ⭐️ —

Drylabs maintains dry-python and helps those who want to use it inside their organizations.

Read more at drylabs.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classes-0.4.0.tar.gz (28.8 kB view details)

Uploaded Source

Built Distribution

classes-0.4.0-py3-none-any.whl (37.0 kB view details)

Uploaded Python 3

File details

Details for the file classes-0.4.0.tar.gz.

File metadata

  • Download URL: classes-0.4.0.tar.gz
  • Upload date:
  • Size: 28.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.8.9 Darwin/18.7.0

File hashes

Hashes for classes-0.4.0.tar.gz
Algorithm Hash digest
SHA256 32d96f78a9dff5830f24dfbf3f5f018bb169b8aa6325a8f88423290ccd35d030
MD5 8eef826d8aff8f76934a1f19de05210e
BLAKE2b-256 fef6b342ceb811cb0757c84f05d3758c4e9bdc92d96f026099e0423d6c164d92

See more details on using hashes here.

File details

Details for the file classes-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: classes-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 37.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.8.9 Darwin/18.7.0

File hashes

Hashes for classes-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b73394c070a80e0f8b9fe44eac8eee8703a3d35302248fcab194db78d37690bd
MD5 b818b2f92c35322ccd2f422a2f0fde4f
BLAKE2b-256 9b5c9595f433609c2901a88b39855e328bae60052bb94335bb759cdf894ee004

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page