Skip to main content

Have you every struggled with needing a Spacy TextCategorizer but didn't have the time to train one from scratch? Classy Classification is the way to go!

Project description

Classy Classification

Have you every struggled with needing a Spacy TextCategorizer but didn't have the time to train one from scratch? Classy Classification is the way to go! For few-shot classification using sentence-transformers or spaCy models, provide a dictionary with labels and examples, or just provide a list of labels for zero shot-classification with Hugginface zero-shot classifiers.

Current Release Version pypi Version PyPi downloads

Install

pip install classy-classification

Quickstart

SpaCy embeddings

import spacy
import classy_classification

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

nlp = spacy.load("en_core_web_md")
nlp.add_pipe(
    "text_categorizer", 
    config={
        "data": data, 
        "model": "spacy"
    }
) 

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"label": "furniture", "score": 0.21}, {"label": "kitchen", "score": 0.79}]

Sentence-transfomer embeddings

import spacy
import classy_classification

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

nlp = spacy.blank("en")
nlp.add_pipe(
    "text_categorizer", 
    config={
        "data": data, 
        "model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
        "device": "gpu"
    }
) 

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"label": "furniture", "score": 0.21}, {"label": "kitchen", "score": 0.79}]

Hugginface zero-shot classifiers

import spacy
import classy_classification

data = ["furniture", "kitchen"]

nlp = spacy.blank("en")
nlp.add_pipe(
    "text_categorizer", 
    config={
        "data": data, 
        "model": "facebook/bart-large-mnli",
        "cat_type": "zero",
        "device": "gpu"
    }
) 

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"label": "furniture", "score": 0.21}, {"label": "kitchen", "score": 0.79}]

Credits

Inspiration Drawn From

Huggingface does offer some nice models for few/zero-shot classification, but these are not tailored to multi-lingual approaches. Rasa NLU has a nice approach for this, but its too embedded in their codebase for easy usage outside of Rasa/chatbots. Additionally, it made sense to integrate sentence-transformers and Hugginface zero-shot, instead of default word embeddings. Finally, I decided to integrate with Spacy, since training a custom Spacy TextCategorizer seems like a lot of hassle if you want something quick and dirty.

Or buy me a coffee

"Buy Me A Coffee"

Standalone usage without spaCy

from classy_classification import classyClassifier

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

classifier = classyClassifier(data=data)
classifier("I am looking for kitchen appliances.")
classifier.pipe(["I am looking for kitchen appliances."])

# overwrite training data
classifier.set_training_data(data=data)
classifier("I am looking for kitchen appliances.")

# overwrite [embedding model](https://www.sbert.net/docs/pretrained_models.html)
classifier.set_embedding_model(model="paraphrase-MiniLM-L3-v2")
classifier("I am looking for kitchen appliances.")

# overwrite SVC config
classifier.set_svc(
    config={                              
        "C": [1, 2, 5, 10, 20, 100],
        "kernels": ["linear"],                              
        "max_cross_validation_folds": 5
    }
)
classifier("I am looking for kitchen appliances.")

Todo

[ ] look into a way to integrate spacy trf models.

[ ] multiple clasifications datasets for a single input e.g. emotions and topic.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classy-classification-0.3.6.tar.gz (9.2 kB view details)

Uploaded Source

Built Distribution

classy_classification-0.3.6-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file classy-classification-0.3.6.tar.gz.

File metadata

  • Download URL: classy-classification-0.3.6.tar.gz
  • Upload date:
  • Size: 9.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.8.2 Windows/10

File hashes

Hashes for classy-classification-0.3.6.tar.gz
Algorithm Hash digest
SHA256 09567d05aca3b90a45ee8dea55994fa9dabf150c4a2acfee86d88ec8bd2f9603
MD5 06b1d1f1886a3fabd129f8d123057443
BLAKE2b-256 b65e8879de13c21fc292ff1af5702eb92c8bba69b56d6769afef68897fd55a0c

See more details on using hashes here.

File details

Details for the file classy_classification-0.3.6-py3-none-any.whl.

File metadata

File hashes

Hashes for classy_classification-0.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 f15a0cb69a32c8269d0176dab3b5fee43b504a7ba19c0f06079e4cfa9f93e778
MD5 01905bf92cc23f878ff6ebfe9360fd47
BLAKE2b-256 2a02a2da70ba229107a7b88638a1bc82759186a34a18f2abea6bf215d0c0b11a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page