Skip to main content

Have you every struggled with needing a Spacy TextCategorizer but didn't have the time to train one from scratch? Classy Classification is the way to go!

Project description

Classy Classification

Have you every struggled with needing a Spacy TextCategorizer but didn't have the time to train one from scratch? Classy Classification is the way to go! For few-shot classification using sentence-transformers or spaCy models, provide a dictionary with labels and examples, or just provide a list of labels for zero shot-classification with Hugginface zero-shot classifiers.

Current Release Version pypi Version PyPi downloads Code style: black

Install

pip install classy-classification

Quickstart

SpaCy embeddings

import spacy
import classy_classification

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

nlp = spacy.load("en_core_web_md")
nlp.add_pipe(
    "text_categorizer", 
    config={
        "data": data, 
        "model": "spacy"
    }
) 

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"label": "furniture", "score": 0.21}, {"label": "kitchen", "score": 0.79}]

Sentence-transfomer embeddings

import spacy
import classy_classification

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

nlp = spacy.blank("en")
nlp.add_pipe(
    "text_categorizer", 
    config={
        "data": data, 
        "model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
        "device": "gpu"
    }
) 

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"label": "furniture", "score": 0.21}, {"label": "kitchen", "score": 0.79}]

Hugginface zero-shot classifiers

import spacy
import classy_classification

data = ["furniture", "kitchen"]

nlp = spacy.blank("en")
nlp.add_pipe(
    "text_categorizer", 
    config={
        "data": data, 
        "model": "facebook/bart-large-mnli",
        "cat_type": "zero",
        "device": "gpu"
    }
) 

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"label": "furniture", "score": 0.21}, {"label": "kitchen", "score": 0.79}]

Credits

Inspiration Drawn From

Huggingface does offer some nice models for few/zero-shot classification, but these are not tailored to multi-lingual approaches. Rasa NLU has a nice approach for this, but its too embedded in their codebase for easy usage outside of Rasa/chatbots. Additionally, it made sense to integrate sentence-transformers and Hugginface zero-shot, instead of default word embeddings. Finally, I decided to integrate with Spacy, since training a custom Spacy TextCategorizer seems like a lot of hassle if you want something quick and dirty.

Or buy me a coffee

"Buy Me A Coffee"

Standalone usage without spaCy

from classy_classification import classyClassifier

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

classifier = classyClassifier(data=data)
classifier("I am looking for kitchen appliances.")
classifier.pipe(["I am looking for kitchen appliances."])

# overwrite training data
classifier.set_training_data(data=data)
classifier("I am looking for kitchen appliances.")

# overwrite [embedding model](https://www.sbert.net/docs/pretrained_models.html)
classifier.set_embedding_model(model="paraphrase-MiniLM-L3-v2")
classifier("I am looking for kitchen appliances.")

# overwrite SVC config
classifier.set_svc(
    config={                              
        "C": [1, 2, 5, 10, 20, 100],
        "kernels": ["linear"],                              
        "max_cross_validation_folds": 5
    }
)
classifier("I am looking for kitchen appliances.")

Todo

[ ] look into a way to integrate spacy trf models.

[ ] multiple clasifications datasets for a single input e.g. emotions and topic.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classy-classification-0.4.2.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

classy_classification-0.4.2-py3-none-any.whl (13.7 kB view details)

Uploaded Python 3

File details

Details for the file classy-classification-0.4.2.tar.gz.

File metadata

  • Download URL: classy-classification-0.4.2.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for classy-classification-0.4.2.tar.gz
Algorithm Hash digest
SHA256 5f962be832da93f48b38c166d7823e215f909b8af883b3c83f5fed841240ff09
MD5 ed69aab026ab642118f8af2ef2cdcfca
BLAKE2b-256 55b81cdf9b15210912ea5eebe873121a2d833c9556d0c455cd80d553d9b1cc4b

See more details on using hashes here.

File details

Details for the file classy_classification-0.4.2-py3-none-any.whl.

File metadata

File hashes

Hashes for classy_classification-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6b4d3cb56e5269fe50dded8e6ae712f3bfa7059c0cb833e94941c21c4e28b0a3
MD5 989c132f387bb2816b19f7e062c0481c
BLAKE2b-256 b25af515f60ef418e243e05f04f4b515269058cf4ab9ce0f33daa1036dc98372

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page