Skip to main content

Have you every struggled with needing a Spacy TextCategorizer but didn't have the time to train one from scratch? Classy Classification is the way to go!

Project description

Classy Classification

Have you ever struggled with needing a Spacy TextCategorizer but didn't have the time to train one from scratch? Classy Classification is the way to go! For few-shot classification using sentence-transformers or spaCy models, provide a dictionary with labels and examples, or just provide a list of labels for zero shot-classification with Hugginface zero-shot classifiers.

Current Release Version pypi Version PyPi downloads Code style: black

Install

pip install classy-classification

Or, install with faster inference using ONNX.

pip install classy-classification[onnx]

ONNX issues

pickling

ONNX does show some issues when pickling the data.

M1

Some installation issues might occur, which can be fixed by these commands.

brew install cmake
brew install protobuf
pip3 install onnx --no-use-pep517

Quickstart

SpaCy embeddings

import spacy
import classy_classification
# or import standalon
from classy_classification import ClassyClassifier

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

nlp = spacy.load("en_core_web_trf")
nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data,
        "model": "spacy"
    }
)

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"furniture" : 0.21}, {"kitchen": 0.79}]

Sentence level classification

import spacy
import classy_classification

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data,
        "model": "spacy",
        "include_sent": True
    }
)

print(nlp("I am looking for kitchen appliances. And I love doing so.").sents[0]._.cats)

# Output:
#
# [[{"furniture" : 0.21}, {"kitchen": 0.79}]

Define random seed and verbosity

nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data,
        "verbose": True,
        "config": {"seed": 42}
    }
)

Multi-label classification

Sometimes multiple labels are necessary to fully describe the contents of a text. In that case, we want to make use of the multi-label implementation, here the sum of label scores is not limited to 1. Just pass the same training data to multiple keys.

import spacy
import classy_classification

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa.",
               "We have a new dinner table.",
               "There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens.",
                "We have a new dinner table."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens.",
                "We have a new dinner table.",
                "There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens.",
                "We have a new dinner table."]
}

nlp = spacy.load("en_core_web_md")
nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data,
        "model": "spacy",
        "multi_label": True,
    }
)

print(nlp("I am looking for furniture and kitchen equipment.")._.cats)

# Output:
#
# [{"furniture": 0.92}, {"kitchen": 0.91}]

Outlier detection

Sometimes it is worth to be able to do outlier detection or binary classification. This can either be approached using a binary training dataset, however, I have also implemented support for a OneClassSVM for outlier detection using a single label. Not that this method does not return probabilities, but that the data is formatted like label-score value pair to ensure uniformity.

Approach 1:

import spacy
import classy_classification

data_binary = {
    "inlier": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "outlier": ["Text about kitchen equipment",
                "This text is about politics",
                "Comments about AI and stuff."]
}

nlp = spacy.load("en_core_web_md")
nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data_binary,
    }
)

print(nlp("This text is a random text")._.cats)

# Output:
#
# [{'inlier': 0.2926672385488411, 'outlier': 0.707332761451159}]

Approach 2:

import spacy
import classy_classification

data_singular = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa.",
               "We have a new dinner table."]
}
nlp = spacy.load("en_core_web_md")
nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data_singular,
    }
)

print(nlp("This text is a random text")._.cats)

# Output:
#
# [{'furniture': 0, 'not_furniture': 1}]

Sentence-transfomer embeddings

import spacy
import classy_classification

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

nlp = spacy.blank("en")
nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data,
        "model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
        "device": "gpu"
    }
)

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"furniture": 0.21}, {"kitchen": 0.79}]

Hugginface zero-shot classifiers

import spacy
import classy_classification

data = ["furniture", "kitchen"]

nlp = spacy.blank("en")
nlp.add_pipe(
    "text_categorizer",
    config={
        "data": data,
        "model": "typeform/distilbert-base-uncased-mnli",
        "cat_type": "zero",
        "device": "gpu"
    }
)

print(nlp("I am looking for kitchen appliances.")._.cats)

# Output:
#
# [{"furniture": 0.21}, {"kitchen": 0.79}]

Credits

Inspiration Drawn From

Huggingface does offer some nice models for few/zero-shot classification, but these are not tailored to multi-lingual approaches. Rasa NLU has a nice approach for this, but its too embedded in their codebase for easy usage outside of Rasa/chatbots. Additionally, it made sense to integrate sentence-transformers and Hugginface zero-shot, instead of default word embeddings. Finally, I decided to integrate with Spacy, since training a custom Spacy TextCategorizer seems like a lot of hassle if you want something quick and dirty.

Or buy me a coffee

"Buy Me A Coffee"

Standalone usage without spaCy

from classy_classification import ClassyClassifier

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}

classifier = ClassyClassifier(data=data)
classifier("I am looking for kitchen appliances.")
classifier.pipe(["I am looking for kitchen appliances."])

# overwrite training data
classifier.set_training_data(data=data)
classifier("I am looking for kitchen appliances.")

# overwrite [embedding model](https://www.sbert.net/docs/pretrained_models.html)
classifier.set_embedding_model(model="paraphrase-MiniLM-L3-v2")
classifier("I am looking for kitchen appliances.")

# overwrite SVC config
classifier.set_classification_model(
    config={
        "C": [1, 2, 5, 10, 20, 100],
        "kernel": ["linear"],
        "max_cross_validation_folds": 5
    }
)
classifier("I am looking for kitchen appliances.")

Save and load models

data = {
    "furniture": ["This text is about chairs.",
               "Couches, benches and televisions.",
               "I really need to get a new sofa."],
    "kitchen": ["There also exist things like fridges.",
                "I hope to be getting a new stove today.",
                "Do you also have some ovens."]
}
classifier = classyClassifier(data=data)

with open("./classifier.pkl", "wb") as f:
    pickle.dump(classifier, f)

f = open("./classifier.pkl", "rb")
classifier = pickle.load(f)
classifier("I am looking for kitchen appliances.")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classy_classification-0.6.3.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

classy_classification-0.6.3-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file classy_classification-0.6.3.tar.gz.

File metadata

  • Download URL: classy_classification-0.6.3.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for classy_classification-0.6.3.tar.gz
Algorithm Hash digest
SHA256 ba649061fd5ce2576a005bba83350438f62c9d0c5426ac1483e47b96170e5344
MD5 597a89ed01333981c315315afa41aaad
BLAKE2b-256 162f2f24b10b2fb14a067729efb36027e7f0d965ebc209386cab1efaa87c0a15

See more details on using hashes here.

File details

Details for the file classy_classification-0.6.3-py3-none-any.whl.

File metadata

File hashes

Hashes for classy_classification-0.6.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1b2a9c8a7e71d23c1ed84e579dd09b727f5cb89eac2b69a5509c0a526a058e05
MD5 d7312e3c791ee39e7bd96f570fd93599
BLAKE2b-256 cf70db721dd68553f868666e25f1c6fb3a2be0f5e7cc315c885ed74adb4dcf73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page