Skip to main content

Climate-related tools that I use in my work, gathered in a single module

Project description

https://zenodo.org/badge/DOI/10.5281/zenodo.4621058.svg https://badge.fury.io/py/climateforcing.svg https://img.shields.io/pypi/pyversions/climateforcing https://img.shields.io/conda/v/chrisroadmap/climateforcing

climateforcing

An incomplete toolbox of scripts and modules used for analysis of climate models and climate data.

Installation

conda

Putting this on conda-forge is a TODO, for now you can grab it from my personal channel:

conda install -c chrisroadmap climateforcing

pypi

pip install climateforcing

development version

I strongly recommend doing this inside a virtual environment, e.g. conda, to keep your base python installation clean.

Clone the repository, cd to climateforcing and run

pip install -e .[dev]

Contents

aprp: Approximate Partial Radiative Perturbation

Generates the components of shortwave effective radiative forcing (ERF) from changes in absorption, scattering and cloud amount. For aerosols, this can be used to approximate the ERF from aerosol-radiation interactions (ERFari) and aerosol-cloud interactions (ERFaci). Citations:

  • Zelinka, M. D., Andrews, T., Forster, P. M., and Taylor, K. E. (2014), Quantifying components of aerosol‐cloud‐radiation interactions in climate models, J. Geophys. Res. Atmos., 119, 7599–7615, https://doi.org/10.1002/2014JD021710.

  • Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., Mitchell, J. F. B., & Webb, M. J. (2007). Estimating Shortwave Radiative Forcing and Response in Climate Models, Journal of Climate, 20(11), 2530–2543, https://doi.org/10.1175/JCLI4143.1

atmos: general atmospheric physics tools

humidity: Conversions for specific to relative humidity and vice versa.

geometry: quick and dirty area-weighted mean

For when you relly want to know the global mean but don’t want to think too hard or download anything much. (Works nicely with aprp).

solar: time-mean solar zenith angle

Lots of tools exist for calculating the solar zenith angle. No tools exist, as far as I can see, for calculating the daylight-corrected mean solar zenith angle. Why do we want to do this? Sub-daily climate model data is often outputted only as hourly, 3-hourly or 6-hourly means, including for shortwave radiation diagnostics. Say you want to try and calculate the mean direct normal radiation over a 3-hour mean timestep, given the horizontal diffuse (rsdsdiff) and horizontal total (rsds). You will need an estimate of the mean solar zenith angle to do this.

twolayermodel: two-layer energy balance climate model

Implementation of the Held et al (2010) and Geoffroy et al (2013a, 2013b) two-layer climate model. Thanks to Glen Harris for the original code.

  • Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., & Vallis, G. K. (2010), Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing, J. Climate, 23(9), 2418–2427, https://doi.org/10.1175/2009JCLI3466.1

  • Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., & Tytéca, S. (2013a). Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments, J. Climate, 26(6), 1841-1857, https://doi.org/10.1175/JCLI-D-12-00195.1

  • Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L., & Tytéca, S. (2013b), Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs, J. Climate, 26(6), 1859-1876, https://doi.org/10.1175/JCLI-D-12-00196.1

  • Palmer, M. D., Harris, G. R. and Gregory, J. M. (2018), Extending CMIP5 projections of global mean temperature change and sea level rise due to the thermal expansion using a physically-based emulator, Environ. Res. Lett., 13(8), 084003, https://doi.org/10.1088/1748-9326/aad2e4

utci: Universal Climate Thermal Index

Calculates a measure of heat stress based on meteorological data. The code provided is a Python translation of the original FORTRAN, used under kind permission of Peter Bröde. If you use this code please cite:

  • Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G, 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56, 481-494, https://doi.org/10.1007/s00484-011-0454-1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

climateforcing-0.3.0.tar.gz (55.5 kB view details)

Uploaded Source

Built Distribution

climateforcing-0.3.0-py3-none-any.whl (40.1 kB view details)

Uploaded Python 3

File details

Details for the file climateforcing-0.3.0.tar.gz.

File metadata

  • Download URL: climateforcing-0.3.0.tar.gz
  • Upload date:
  • Size: 55.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.9.16

File hashes

Hashes for climateforcing-0.3.0.tar.gz
Algorithm Hash digest
SHA256 d94b85bcd997f3f4a9e68a4b45227757ea0f512e6a1fb51078997aacdd00bfb6
MD5 b686634d2887e385de070b001fe1167d
BLAKE2b-256 9886b479f6c51a473408f2170053b8d9f386643a41b1973b61d573f5ef3e5f18

See more details on using hashes here.

File details

Details for the file climateforcing-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: climateforcing-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 40.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.9.16

File hashes

Hashes for climateforcing-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 57b65faacedc4b4984248632ac4694bc57abbcd716f5a1016f3eff4f607742ce
MD5 9a98aa20b15703f1d0370deb23875072
BLAKE2b-256 36f9171fad71c4ddce15444b8df6aad689fba95785b0f336f6d2eed412f7d0bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page