Skip to main content

Climate-related tools that I use in my work, gathered in a single module

Project description

Climate forcing

An incomplete toolbox of scripts and modules used for analysis of climate models and climate data.

Installation

pypi

pip install climateforcing

development version

I strongly recommend doing this inside a virtual environment, e.g. conda, to keep your base python installation clean.

Clone the repository, cd to climateforcing and run

pip install -e .[dev]

Contents

aprp: Approximate Partial Radiative Perturbation

Generates the components of shortwave effective radiative forcing (ERF) from changes in absorption, scattering and cloud amount. For aerosols, this can be used to approximate the ERF from aerosol-radiation interactions (ERFari) and aerosol-cloud interactions (ERFaci). Citations:

  • Zelinka, M. D., Andrews, T., Forster, P. M., and Taylor, K. E. (2014), Quantifying components of aerosol‐cloud‐radiation interactions in climate models, J. Geophys. Res. Atmos., 119, 7599–7615, https://doi.org/10.1002/2014JD021710.

  • Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., Mitchell, J. F. B., & Webb, M. J. (2007). Estimating Shortwave Radiative Forcing and Response in Climate Models, Journal of Climate, 20(11), 2530–2543, https://doi.org/10.1175/JCLI4143.1

atmos: general atmospheric physics tools

humidity: Conversions for specific to relative humidity and vice versa.

twolayermodel: two-layer energy balance climate model

Implementation of the Held et al (2010) and Geoffroy et al (2013a, 2013b) two-layer climate model. Thanks to Glen Harris for the original code.

  • Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., & Vallis, G. K. (2010), Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing, J. Climate, 23(9), 2418–2427, https://doi.org/10.1175/2009JCLI3466.1

  • Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., & Tytéca, S. (2013a). Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments, J. Climate, 26(6), 1841-1857, https://doi.org/10.1175/JCLI-D-12-00195.1

  • Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L., & Tytéca, S. (2013b), Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs, J. Climate, 26(6), 1859-1876, https://doi.org/10.1175/JCLI-D-12-00196.1

  • Palmer, M. D., Harris, G. R. and Gregory, J. M. (2018), Extending CMIP5 projections of global mean temperature change and sea level rise due to the thermal expansion using a physically-based emulator, Environ. Res. Lett., 13(8), 084003, https://doi.org/10.1088/1748-9326/aad2e4

utci: Universal Climate Thermal Index

Calculates a measure of heat stress based on meteorological data. The code provided is a Python translation of the original FORTRAN, used under kind permission of Peter Bröde. If you use this code please cite:

  • Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G, 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56, 481-494, https://doi.org/10.1007/s00484-011-0454-1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

climateforcing-0.1.0.tar.gz (37.3 kB view details)

Uploaded Source

Built Distribution

climateforcing-0.1.0-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file climateforcing-0.1.0.tar.gz.

File metadata

  • Download URL: climateforcing-0.1.0.tar.gz
  • Upload date:
  • Size: 37.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for climateforcing-0.1.0.tar.gz
Algorithm Hash digest
SHA256 7297ad45a6e8052304fb5d15371185dbb6f0eb3b667b242752755b010047eb69
MD5 79979c3285e17def1bd1a0bb145e1d98
BLAKE2b-256 fabd1c0bec00f0afa202e629842e8f6c4cd12753ee8dd68215409cfb94dfcaba

See more details on using hashes here.

Provenance

File details

Details for the file climateforcing-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: climateforcing-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 25.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for climateforcing-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fc282121a67cdbe7d6b39118288c9bf098601f790392bd8ede91a0b241f25bf3
MD5 7242cc58d47945755bc9ee4b5c5c0374
BLAKE2b-256 2aaf0f1014f531df3a08c28c0ce88687ffb63ae9927cc2409091923254d852bb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page