Skip to main content

Climate-related tools that I use in my work, gathered in a single module

Project description

https://zenodo.org/badge/DOI/10.5281/zenodo.4621058.svg https://badge.fury.io/py/climateforcing.svg PyPI - Python Version

Climate forcing

An incomplete toolbox of scripts and modules used for analysis of climate models and climate data.

Installation

pypi

pip install climateforcing

development version

I strongly recommend doing this inside a virtual environment, e.g. conda, to keep your base python installation clean.

Clone the repository, cd to climateforcing and run

pip install -e .[dev]

Contents

aprp: Approximate Partial Radiative Perturbation

Generates the components of shortwave effective radiative forcing (ERF) from changes in absorption, scattering and cloud amount. For aerosols, this can be used to approximate the ERF from aerosol-radiation interactions (ERFari) and aerosol-cloud interactions (ERFaci). Citations:

  • Zelinka, M. D., Andrews, T., Forster, P. M., and Taylor, K. E. (2014), Quantifying components of aerosol‐cloud‐radiation interactions in climate models, J. Geophys. Res. Atmos., 119, 7599–7615, https://doi.org/10.1002/2014JD021710.

  • Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., Mitchell, J. F. B., & Webb, M. J. (2007). Estimating Shortwave Radiative Forcing and Response in Climate Models, Journal of Climate, 20(11), 2530–2543, https://doi.org/10.1175/JCLI4143.1

atmos: general atmospheric physics tools

humidity: Conversions for specific to relative humidity and vice versa.

geometry: quick and dirty area-weighted mean

For when you relly want to know the global mean but don’t want to think or download anything much. (Works nicely with aprp).

twolayermodel: two-layer energy balance climate model

Implementation of the Held et al (2010) and Geoffroy et al (2013a, 2013b) two-layer climate model. Thanks to Glen Harris for the original code.

  • Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., & Vallis, G. K. (2010), Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing, J. Climate, 23(9), 2418–2427, https://doi.org/10.1175/2009JCLI3466.1

  • Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., & Tytéca, S. (2013a). Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments, J. Climate, 26(6), 1841-1857, https://doi.org/10.1175/JCLI-D-12-00195.1

  • Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L., & Tytéca, S. (2013b), Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs, J. Climate, 26(6), 1859-1876, https://doi.org/10.1175/JCLI-D-12-00196.1

  • Palmer, M. D., Harris, G. R. and Gregory, J. M. (2018), Extending CMIP5 projections of global mean temperature change and sea level rise due to the thermal expansion using a physically-based emulator, Environ. Res. Lett., 13(8), 084003, https://doi.org/10.1088/1748-9326/aad2e4

utci: Universal Climate Thermal Index

Calculates a measure of heat stress based on meteorological data. The code provided is a Python translation of the original FORTRAN, used under kind permission of Peter Bröde. If you use this code please cite:

  • Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G, 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56, 481-494, https://doi.org/10.1007/s00484-011-0454-1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

climateforcing-0.1.1.tar.gz (40.2 kB view details)

Uploaded Source

Built Distribution

climateforcing-0.1.1-py3-none-any.whl (29.3 kB view details)

Uploaded Python 3

File details

Details for the file climateforcing-0.1.1.tar.gz.

File metadata

  • Download URL: climateforcing-0.1.1.tar.gz
  • Upload date:
  • Size: 40.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for climateforcing-0.1.1.tar.gz
Algorithm Hash digest
SHA256 162c98fc25e01e7a994cc51a1f4efae542ed7e08f1f05990e753cb861b1f875d
MD5 429602beedcb6e65d62e852d4844d931
BLAKE2b-256 b4fac732be4ecf988372a5ea7337147443e7c237210c07f5443e9039ef2ce6c6

See more details on using hashes here.

Provenance

File details

Details for the file climateforcing-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: climateforcing-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 29.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for climateforcing-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4b9c99a7fc624949b7bb85d1d92260bc6cde87a7c39dbc82b87cfe3f5aa3d301
MD5 19b17a5630d95c7bd1b11aee45ed9772
BLAKE2b-256 a5336649f8900b992dc627b70a3c49d57805120b845e017b80adb9d7fb524da2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page