Skip to main content

Software platform for clinical neuroimaging studies

Project description

Logo
Clinica

Software platform for clinical neuroimaging studies

Build Status PyPI version Supported Python versions platform Code style: black Downloads

Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL, ClinicaDL

About The Project

Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data (neuroimaging, clinical and cognitive evaluations, genetics...), most often with longitudinal follow-up.

Clinica is command-line driven and written in Python. It uses the Nipype system for pipelining and combines widely-used software packages for neuroimaging data analysis (ANTs, FreeSurfer, FSL, MRtrix, PETPVC, SPM), machine learning (Scikit-learn) and the BIDS standard for data organization.

Clinica provides tools to convert publicly available neuroimaging datasets into BIDS, namely:

Clinica can process any BIDS-compliant dataset with a set of complex processing pipelines involving different software packages for the analysis of neuroimaging data (T1-weighted MRI, diffusion MRI and PET data). It also provides integration between feature extraction and statistics, machine learning or deep learning.

ClinicaPipelines

Clinica is also showcased as a framework for the reproducible classification of Alzheimer's disease using machine learning and deep learning.

Getting Started

Full instructions for installation and additional information can be found in the user documentation.

Using pipx (recommended)

Clinica can be easily installed and updated using pipx.

pipx install clinica

Using pip

pip install clinica

Using Conda

Clinica relies on multiple third-party tools to perform processing.

An environment file is provided in this repository to facilitate their installation in a Conda environment:

git clone https://github.com/aramis-lab/clinica && cd clinica
conda env create
conda activate clinica

After activation, use pip to install Clinica.

Additional dependencies (required)

Depending on the pipeline that you want to use, you need to install pipeline-specific interfaces. Some of which uses a different runtime or use incompatible licensing terms, which prevent their distribution alongside Clinica. Not all the dependencies are necessary to run Clinica. Please refer to this page to determine which third-party libraries you need to install.

Example

Diagram illustrating the Clinica pipelines involved when performing a group comparison of FDG PET data projected on the cortical surface between patients with Alzheimer's disease and healthy controls from the ADNI database:

ClinicaExample

  1. Clinical and neuroimaging data are downloaded from the ADNI website and data are converted into BIDS with the adni-to-bids converter.
  2. Estimation of the cortical and white surface is then produced by the t1-freesurfer pipeline.
  3. FDG PET data can be projected on the subject’s cortical surface and normalized to the FsAverage template from FreeSurfer using the pet-surface pipeline.
  4. TSV file with demographic information of the population studied is given to the statistics-surface pipeline to generate the results of the group comparison.

For more examples and details, please refer to the Documentation.

Support

Contributing

We encourage you to contribute to Clinica! Please check out the Contributing to Clinica guide for guidelines about how to proceed. Do not hesitate to ask questions if something is not clear for you, report an issue, etc.

License

This software is distributed under the MIT License. See license file for more information.

Citing us

  • Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T., Lu, P., Marcoux, A., Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies Frontiers in Neuroinformatics, 2021 doi:10.3389/fninf.2021.689675

Related Repositories

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clinica-0.7.4.tar.gz (599.1 kB view details)

Uploaded Source

Built Distribution

clinica-0.7.4-py3-none-any.whl (758.3 kB view details)

Uploaded Python 3

File details

Details for the file clinica-0.7.4.tar.gz.

File metadata

  • Download URL: clinica-0.7.4.tar.gz
  • Upload date:
  • Size: 599.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for clinica-0.7.4.tar.gz
Algorithm Hash digest
SHA256 2df0727dd8c8167816048256b0c23a43b426fd000fe086a6a9cd5065822f9a63
MD5 7e50fe332b7e066d46a9214415e97913
BLAKE2b-256 5383eaab42326c73a1d44c22c0062dbf20367f20a00d8fc86cc977fce7e5cb4c

See more details on using hashes here.

File details

Details for the file clinica-0.7.4-py3-none-any.whl.

File metadata

  • Download URL: clinica-0.7.4-py3-none-any.whl
  • Upload date:
  • Size: 758.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for clinica-0.7.4-py3-none-any.whl
Algorithm Hash digest
SHA256 9b3f0329eee5da4c1fa237f1ca972895c060d06c579baefa1a564c2427dd37eb
MD5 4769543e3aa11e7a732e029c5dcba5a7
BLAKE2b-256 dca75ccc97917b3df93ee858bacca9ea346eb661c95e69348374627b4b9a3214

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page