Skip to main content

Deep learning classification with clinica

Project description

Clinica Logo + PyTorch Logo
ClinicaDL

Framework for the reproducible processing of neuroimaging data with deep learning methods

Build Status PyPI version Documentation Status

Documentation | Tutorial | Forum

About the project

This repository hosts ClinicaDL, the deep learning extension of Clinica, a python library to process neuroimaging data in BIDS format.

Disclaimer: this software is under development. Some features can change between different releases and/or commits.

To access the full documentation of the project, follow the link https://clinicadl.readthedocs.io/. If you find a problem when using it or if you want to provide us feedback, please open an issue or write on the forum.

Getting started

ClinicaDL currently supports macOS and Linux.

We recommend to use conda or virtualenv for the installation of ClinicaDL as it guarantees the correct management of libraries depending on common packages:

conda create --name ClinicaDL python=3.7
conda activate ClinicaDL
pip install clinicadl

:warning: NEW!: :warning:

:reminder_ribbon: Visit our hands-on tutorial web site to start using ClinicaDL directly in a Google Colab instance!

Related Repositories

Citing us

  • Wen, J., Thibeau-Sutre, E., Samper-González, J., Routier, A., Bottani, S., Durrleman, S., Burgos, N., and Colliot, O.: ‘Convolutional Neural Networks for Classification of Alzheimer’s Disease: Overview and Reproducible Evaluation’, Medical Image Analysis, 63: 101694, 2020. doi:10.1016/j.media.2020.101694 Open Access version
  • Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T., Lu, P., Marcoux, A., Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: ‘Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies’, 2021. hal-02308126

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clinicadl-1.0.0.tar.gz (87.1 kB view details)

Uploaded Source

Built Distribution

clinicadl-1.0.0-py2.py3-none-any.whl (119.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file clinicadl-1.0.0.tar.gz.

File metadata

  • Download URL: clinicadl-1.0.0.tar.gz
  • Upload date:
  • Size: 87.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.6

File hashes

Hashes for clinicadl-1.0.0.tar.gz
Algorithm Hash digest
SHA256 f609a57317436d502bcd9e140e52d974e3f2a475954f5a051571d2532843d8aa
MD5 d764a83ca177e795bcb6e087143d14ac
BLAKE2b-256 6a30cd4f599a4ad93ce9e53dca8e22a08672a73f50fd03421c1cef6025888812

See more details on using hashes here.

File details

Details for the file clinicadl-1.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: clinicadl-1.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 119.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.6

File hashes

Hashes for clinicadl-1.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 31349c1ad6088df51cbca939295108c1eca9636e8274f6425eda4d155a67e71c
MD5 9f4e314bd79a5861125a58cc3ff089be
BLAKE2b-256 e56892280292246ca92ddc67a4028f054e7d698adb52bd37ba02c3020c811b43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page