Skip to main content

Deep learning classification with clinica

Project description

Clinica Logo + PyTorch Logo
ClinicaDL

Framework for the reproducible processing of neuroimaging data with deep learning methods

Build Status PyPI version Documentation Status

Documentation | Tutorial | Forum

About the project

This repository hosts ClinicaDL, the deep learning extension of Clinica, a python library to process neuroimaging data in BIDS format.

Disclaimer: this software is under development. Some features can change between different releases and/or commits.

To access the full documentation of the project, follow the link https://clinicadl.readthedocs.io/. If you find a problem when using it or if you want to provide us feedback, please open an issue or write on the forum.

Getting started

ClinicaDL currently supports macOS and Linux.

We recommend to use conda or virtualenv for the installation of ClinicaDL as it guarantees the correct management of libraries depending on common packages:

conda create --name ClinicaDL python=3.7
conda activate ClinicaDL
pip install clinicadl

:warning: NEW!: :warning:

:reminder_ribbon: Visit our hands-on tutorial web site to start using ClinicaDL directly in a Google Colab instance!

Related Repositories

Citing us

  • Wen, J., Thibeau-Sutre, E., Samper-González, J., Routier, A., Bottani, S., Durrleman, S., Burgos, N., and Colliot, O.: ‘Convolutional Neural Networks for Classification of Alzheimer’s Disease: Overview and Reproducible Evaluation’, Medical Image Analysis, 63: 101694, 2020. doi:10.1016/j.media.2020.101694 Open Access version
  • Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T., Lu, P., Marcoux, A., Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: ‘Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies’, 2021. hal-02308126

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clinicadl-1.0.1.tar.gz (93.4 kB view details)

Uploaded Source

Built Distribution

clinicadl-1.0.1-py2.py3-none-any.whl (128.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file clinicadl-1.0.1.tar.gz.

File metadata

  • Download URL: clinicadl-1.0.1.tar.gz
  • Upload date:
  • Size: 93.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.6

File hashes

Hashes for clinicadl-1.0.1.tar.gz
Algorithm Hash digest
SHA256 b7370700c83b1af89010fab9896d4e1e37a643ad95b116a33c20773ebed13c16
MD5 f0158d56a78fd9dbc34f3ce22daa2a79
BLAKE2b-256 26c31264c29add11c6b4bfba7962975930e3419ca66f5ab75df83067fbf1d265

See more details on using hashes here.

File details

Details for the file clinicadl-1.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: clinicadl-1.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 128.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.6

File hashes

Hashes for clinicadl-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7fc699e1ffb217d606b1ead3d254c99e09deae90875278c878522508461650b1
MD5 ffb3de5d36865f67366a745d7fc48b26
BLAKE2b-256 08544ebe383ea781cf1c06d377bf79368751ff86b5031cf088053b7dd78c4255

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page