Skip to main content

A command-line tool (and Python library) to extract data from CommCareHQ into a SQL database or Excel workbook

Project description

CommCare Export

https://github.com/dimagi/commcare-export

Build Status Test coverage PyPI version

A command-line tool (and Python library) to generate customized exports from the CommCareHQ REST API.

Installation & Quick Start

0a. Install Python and pip. This tool is tested with Python 2.7, and 3.3.

0b. Sign up for CommCareHQ at https://www.commcarehq.org/register/user if you have not already.

  1. Install CommCare Export via pip

$ pip install commcare-export

2. Visit the CommCareHQ Exchange and add the Simple CommCare Demo/Tutorial” app to a new project space.

  1. Visit the Release Manager, make a build, click the star to release it.

  2. Visit CloudCare and fill out a bunch of forms.

  3. Try out the example queries in the examples/ directory, providing your project name on the command line:

$ commcare-export \
     --query examples/demo-registration.xlsx \
     --project YOUR_PROJECT \
     --output-format markdown

$ commcare-export \
     --query examples/demo-registration.json \
     --project YOUR_PROJECT \
     --output-format markdown

$ commcare-export \
     --query examples/demo-deliveries.xlsx \
     --project YOUR_PROJECT \
     --output-format markdown

$ commcare-export \
     --query examples/demo-deliveries.json \
     --project YOUR_PROJECT \
     --output-format markdown

You’ll see the tables printed out. Change to --output-format sql --output URL_TO_YOUR_DB --since DATE to sync all forms submitted since that date.

All examples are present in Excel and also equivalent JSON.

Command-line Usage

The basic usage of the command-line tool is with a saved Excel or JSON query (see how to write these, below)

$ commcare-export --commcare-hq <URL or alias like "local" or "prod"> \
                  --username <username> \
                  --project <project> \
                  --version <api version, defaults to latest known> \
                  --query <excel file, json file, or raw json> \
                  --output-format <csv, xls, xlsx, json, markdown, sql> \
                  --output <file name or SQL database URL>

See commcare-export --help for the full list of options.

There are example query files for the CommCare Demo App (available on the CommCareHq Exchange) in the examples/ directory.

--output

CommCare Export uses SQLAlachemy’s create_engine to establish a database connection. This is based off of the RFC-1738 protocol. Some common examples:

# Postgres
postgresql+psycopg2://scott:tiger@localhost/mydatabase

# MySQL
mysql+pymysql://scott:tiger@localhost/mydatabase

# MSSQL
mssql+pyodbc://scott:tiger@localhost/mydatabases?driver=ODBC+Driver+17+for+SQL+Server

Excel Queries

An excel query is any .xlsx workbook. Each sheet in the workbook represents one table you wish to create. There are two grouping of columns to configure the table:

  • Data Source: Set this to form to export form data, or case for case data.

  • Filter Name / Filter Value: These columns are paired up to filter the input cases or forms.

  • Field: The destination in your SQL database for the value.

  • Source Field: The particular field from the form you wish to extract. This can be any JSON path.

JSON Queries

JSON queries are a described in the table below. You build a JSON object that represents the query you have in mind. A good way to get started is to work from the examples, or you could make an excel query and run the tool with --dump-query to see the resulting JSON query.

Python Library Usage

As a library, the various commcare_export modules make it easy to

  • Interact with the CommCareHQ REST API

  • Execute “Minilinq” queries against the API (a very simple query language, described below)

  • Load and save JSON representations of Minilinq queries

  • Compile Excel configurations to Minilinq queries

To directly access the CommCareHq REST API:

>>> import getpass
>>> from commcare_export.commcare_hq_client import CommCareHqClient
>>> api_client = CommCareHqClient('http://commcarehq.org', project='your_project').authenticated('your_username', getpass.getpass())
>>> forms = api_client.iterate('form', {'app_id': "whatever"})
>>> [ (form['received_on'], form['form.gender']) for form in forms ]

To issue a minilinq query against it, and then print out that query in a JSON serialization:

import getpass
import json
from commcare_export.minilinq import *
from commcare_export.commcare_hq_client import CommCareHqClient
from commcare_export.commcare_minilinq import CommCareHqEnv
from commcare_export.env import BuiltInEnv

api_client = CommCareHqClient(
    url="http://www.commcarehq.org",
    project='your_project',
    version='0.5'
)

api_client = api_client.authenticated(username='username', password='password', mode='digest')

source = Map(
   source=Apply(
       Reference("api_data"),
       Literal("form"),
       Literal({"filter": {"term": {"app_id": "whatever"}}})
   ),
   body=List([
       Reference("received_on"),
       Reference("form.gender"),
   ])
)

query = Emit(
   'demo-table',
   [
       Literal('Received On'),
       Literal('Gender')
   ],
   source
)

print json.dumps(query.to_jvalue(), indent=2)

results = query.eval(BuiltInEnv() | CommCareHqEnv(api_client) | JsonPathEnv())

if len(list(env.emitted_tables())) > 0:
    # with writers.Excel2007TableWriter("excel-output.xlsx") as writer:
    with writers.StreamingMarkdownTableWriter(sys.stdout) as writer:
        for table in env.emitted_tables():
            writer.write_table(table)

Which will output JSON equivalent to this:

{
    "Emit": {
        "headings": [
            {
                "Lit": "Received On"
            },
            {
                "Lit": "Gender"
            }
        ],
        "source": {
            "Map": {
                "body": {
                    "List": [
                        {
                            "Ref": "received_on"
                        },
                        {
                            "Ref": "form.gender"
                        }
                    ]
                },
                "name": None,
                "source": {
                    "Apply": {
                        "args": [
                            {
                                "Lit": "form"
                            },
                            {
                                "Lit": {
                                    "filter": {
                                        "term": {
                                            "app_id": "whatever"
                                        }
                                    }
                                }
                            }
                        ],
                        "fn": {
                            "Ref": "api_data"
                        }
                    }
                }
            }
        },
        "table": "demo-table"
    }
}

MiniLinq Reference

The abstract syntax can be directly inspected in the commcare_export.minilinq module. Note that the choice between functions and primitives is deliberately chosen to expose the structure of the MiniLinq for possible optimization, and to restrict the overall language.

Here is a description of the astract syntax and semantics

Python

JSON

Which is evaluates to

Literal(v)

{"Lit": v}

Just v

Reference(x)

{"Ref": x}

Whatever x resolves to in the environment

List([a, b, c, ...])

{"List": [a, b, c, ...}

The list of what a, b, c evaluate to

Map(source, name, body)

{"Map": {"source": ..., "name": ..., "body": ...}

Evals body for each elem in source. If name is provided, the elem will be bound to it, otherwise it will replace the whole env.

FlatMap(source, name, body)

{"FlatMap": {"source" ... etc}}

Flattens after mapping, like nested list comprehensions

Filter(source, name, body)

etc

Bind(value, name, body)

etc

Binds the result of value to name when evaluating body

Emit(table, headings, rows)

etc

Emits table with headings and rows. Note that table is a string, headings is a list of expressions, and rows is a list of lists of expressions. See explanation below for emitted output.

Apply(fn, args)

etc

Evaluates fn to a function, and all of args, then applies the function to the args.

Built in functions like api_data and basic arithmetic and comparison are provided via the environment, referred to be name using Ref, and utilized via Apply.

List of builtin functions:

Function

Description

Example Usage

+, -, *, //, /, >, <, >=, <=

Standard Math

len

Length

bool

Bool

str2bool

Convert string to boolean. True values are ‘true’, ‘t’, ‘1’ (case insensitive)

str2date

Convert string to date

bool2int

Convert boolean to integer (0, 1)

str2num

Parse string as a number

selected-at

Returns the Nth word in a string. N is zero-indexed.

selected-at(3) - return 4th word

selected

Returns True if the given word is in the value.

selected(fever)

count-selected

Count the number of words

template

Render a string template (not robust)

template({} on {}, state, date)

attachment_url

Convert an attachment name into it’s download URL

Output Formats

Your MiniLinq may define multiple tables with headings in addition to their body rows by using Emit expressions, or may simply return the results of a single query.

If your MiniLinq does not contain any Emit expressions, then the results of the expression will be printed to standard output as pretty-printed JSON.

If your MiniLinq does contain Emit expressions, then there are many formats available, selected via the --output-format <format> option, and it can be directed to a file with the --output <file> command-line option.

  • csv: Each table will be a CSV file within a Zip archive.

  • xls: Each table will be a sheet in an old-format Excel spreadsheet.

  • xlsx: Each table will be a sheet in a new-format Excel spreadsheet.

  • json: The tables will each be a member of a JSON dictionary, printed to standard output

  • markdown: The tables will be streamed to standard output in Markdown format (very handy for debugging your queries)

  • sql: All data will be idempotently “upserted” into the SQL database you specify, including creating the needed tables and columns.

Dependencies

Required dependencies will be automatically installed via pip. But since you may not care about all export formats, the various dependencies there are optional. Here is how you might install them:

# To export "xlsx"
$ pip install openpyxl

# To export "xls"
$ pip install xlwt

# To sync with a SQL database
$ pip install SQLAlchemy alembic psycopg2 pymysql pyodbc

Contributing

  1. Sign up for github, if you have not already, at https://github.com.

  2. Fork the repository at https://github.com/dimagi/commcare-export.

  3. Clone your fork, install into a virtualenv, and start a feature branch

$ mkvirtualenv commcare-export
$ git clone git@github.com:dimagi/commcare-export.git
$ cd commcare-export
$ pip install -e .
$ git checkout -b my-super-duper-feature
  1. Make your edits.

4. Make sure the tests pass. The best way to test for all versions is to sign up for https://travis-ci.org and turn on automatic continuous testing for your fork.

$ py.test
=============== test session starts ===============
platform darwin -- Python 2.7.3 -- pytest-2.3.4
collected 17 items

tests/test_commcare_minilinq.py .
tests/test_excel_query.py ....
tests/test_minilinq.py ........
tests/test_repeatable_iterator.py .
tests/test_writers.py ...

============ 17 passed in 2.09 seconds ============
  1. Push the feature branch up

$ git push -u origin my-super-duper-feature
  1. Visit https://github.com/dimagi/commcare-export and submit a pull request.

  2. Accept our gratitude for contributing: Thanks!

Release process

  1. Create a tag for the release

$ git tag -a "X.YY.0" -m "Release X.YY.0"
$ git push --tags
  1. Create the source distribution

$ python setup.py sdist

Ensure that the archive (dist/commcare-export-X.YY.0.tar.gz) has the correct version number (matching the tag name).

  1. Upload to pypi

$ pip install twine
$ twine upload dist/commcare-export-X.YY.0.tar.gz
  1. Verify upload

https://pypi-hypernode.com/pypi/commcare-export

  1. Create a release on github

https://github.com/dimagi/commcare-export/releases

Testing databases

Supported databases are PostgreSQL, MySQL, MSSQL

Postgresql

$ docker pull postgres 9.6
$ docker run --name ccexport-postgres -p 5432:5432 -d postgres:9.6

MySQL

$ docker pull mysql
$ docker run --name ccexport-mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=pw -e MYSQL_USER=travis -e MYSQL_PASSWORD='' -d mysql

# create travis user
$ docker run -it --link ccexport-mysql:mysql --rm mysql sh -c 'exec mysql -h"$MYSQL_PORT_3306_TCP_ADDR" -P"$MYSQL_PORT_3306_TCP_PORT" -uroot -p"$MYSQL_ENV_MYSQL_ROOT_PASSWORD"'
mysql> CREATE USER 'travis'@'%';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'travis'@'%';

MSSQL

$ docker pull microsoft/mssql-server-linux:2017-latest
$ docker run -e "ACCEPT_EULA=Y" -e "MSSQL_SA_PASSWORD=Password@123" -p 1433:1433 --name mssql1 -d microsoft/mssql-server-linux:2017-latest

# install driver
$ curl https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -
$ echo "deb [arch=amd64] https://packages.microsoft.com/ubuntu/16.04/prod xenial main" | sudo tee /etc/apt/sources.list.d/mssql-release.list

$ sudo apt-get update -qq
$ sudo ACCEPT_EULA=Y apt-get install msodbcsql17
$ odbcinst -q -d

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

commcare-export-0.22.3.tar.gz (104.0 kB view details)

Uploaded Source

File details

Details for the file commcare-export-0.22.3.tar.gz.

File metadata

File hashes

Hashes for commcare-export-0.22.3.tar.gz
Algorithm Hash digest
SHA256 456e21e6ae9e6d3857c174c23c12f872c03d1b1c5a1e95f5efd633956b641f68
MD5 5762a765fc45cb8d6286e1b9cccd851f
BLAKE2b-256 8d07cca41dc2fa98ba7c161f68f4a8ed8e4076a86c97abef52a5e6671d7b6c1e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page