Skip to main content

This repository contains an easy and intuitive approach to few-shot NER using most similar expansion over spaCy embeddings. Now with entity confidence scores!

Project description

Concise Concepts

When wanting to apply NER to concise concepts, it is really easy to come up with examples, but pretty difficult to train an entire pipeline. Concise Concepts uses few-shot NER based on word embedding similarity to get you going with easy! Now with entity scoring!

Current Release Version pypi Version PyPi downloads

Install

pip install concise-concepts

Quickstart

import spacy
from spacy import displacy
import concise_concepts

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

text = """
    Heat the oil in a large pan and add the Onion, celery and carrots. 
    Then, cook over a medium–low heat for 10 minutes, or until softened. 
    Add the courgette, garlic, red peppers and oregano and cook for 2–3 minutes.
    Later, add some oranges and chickens. """

nlp = spacy.load("en_core_web_lg", disable=["ner"])
# ent_score for entity condifence scoring
nlp.add_pipe("concise_concepts", config={"data": data, "ent_score": True})
doc = nlp(text)

options = {"colors": {"fruit": "darkorange", "vegetable": "limegreen", "meat": "salmon"},
           "ents": ["fruit", "vegetable", "meat"]}

ents = doc.ents
for ent in ents:
    new_label = f"{ent.label_} ({float(ent._.ent_score):.0%})"
    options["colors"][new_label] = options["colors"].get(ent.label_.lower(), None)
    options["ents"].append(new_label)
    ent.label_ = new_label
doc.ents = ents

displacy.render(doc, style="ent", options=options)

use specific number of words to expand over

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

topn = [50, 50, 150]

assert len(topn) == len

nlp.add_pipe("concise_concepts", config={"data": data, "topn": topn})

use word similarity to score entities

import spacy
import concise_concepts

data = {
    "ORG": ["Google", "Apple", "Amazon"],
    "GPE": ["Netherlands", "France", "China"],
}

text = """Sony was founded in Japan."""

nlp = spacy.load("en_core_web_lg")
nlp.add_pipe("concise_concepts", config={"data": data, "ent_score": True})
doc = nlp(text)

print([(ent.text, ent.label_, ent._.ent_score) for ent in doc.ents])
# output
#
# [('Sony', 'ORG', 0.63740385), ('Japan', 'GPE', 0.5896993)]

use gensim.word2vec model from pre-trained gensim or custom model path

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

# model from https://radimrehurek.com/gensim/downloader.html or path to local file
model_path = "glove-twitter-25"

nlp.add_pipe("concise_concepts", config={"data": data, "model_path": model_path})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concise-concepts-0.3.5.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

concise_concepts-0.3.5-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file concise-concepts-0.3.5.tar.gz.

File metadata

  • Download URL: concise-concepts-0.3.5.tar.gz
  • Upload date:
  • Size: 6.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.8.2 Windows/10

File hashes

Hashes for concise-concepts-0.3.5.tar.gz
Algorithm Hash digest
SHA256 0b2a7f4c0387f13f19696b9efed0e428cc173eb0dc5d1cb42fb1c2d2d851cfd6
MD5 e618c3d025e9a7caf2f3bb70a7506627
BLAKE2b-256 08e89dd62b840300a7c6e8b466886a0fd9062a5ffd6de88aad3f1a0c98243b2b

See more details on using hashes here.

File details

Details for the file concise_concepts-0.3.5-py3-none-any.whl.

File metadata

File hashes

Hashes for concise_concepts-0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3b6cf3b9de52a3830aecc9f78270b8ed80a0c37e48f1cfba7eea1a5a3bb46073
MD5 fffeffc27b08806e79eab1170b150467
BLAKE2b-256 c252bee502e90083117684868a05dcb26eb5d2a20af95f0a6b41881e44da23e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page