Skip to main content

This repository contains an easy and intuitive approach to few-shot NER using most similar expansion over spaCy embeddings. Now with entity confidence scores!

Project description

Concise Concepts

When wanting to apply NER to concise concepts, it is really easy to come up with examples, but pretty difficult to train an entire pipeline. Concise Concepts uses few-shot NER based on word embedding similarity to get you going with easy! Now with entity scoring!

Current Release Version pypi Version PyPi downloads

Install

pip install concise-concepts

Quickstart

import spacy
from spacy import displacy
import concise_concepts

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

text = """
    Heat the oil in a large pan and add the Onion, celery and carrots. 
    Then, cook over a medium–low heat for 10 minutes, or until softened. 
    Add the courgette, garlic, red peppers and oregano and cook for 2–3 minutes.
    Later, add some oranges and chickens. """

nlp = spacy.load("en_core_web_lg", disable=["ner"])
# ent_score for entity condifence scoring
nlp.add_pipe("concise_concepts", config={"data": data, "ent_score": True})
doc = nlp(text)

options = {"colors": {"fruit": "darkorange", "vegetable": "limegreen", "meat": "salmon"},
           "ents": ["fruit", "vegetable", "meat"]}

ents = doc.ents
for ent in ents:
    new_label = f"{ent.label_} ({float(ent._.ent_score):.0%})"
    options["colors"][new_label] = options["colors"].get(ent.label_.lower(), None)
    options["ents"].append(new_label)
    ent.label_ = new_label
doc.ents = ents

displacy.render(doc, style="ent", options=options)

use specific number of words to expand over

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

topn = [50, 50, 150]

assert len(topn) == len

nlp.add_pipe("concise_concepts", config={"data": data, "topn": topn})

use word similarity to score entities

import spacy
import concise_concepts

data = {
    "ORG": ["Google", "Apple", "Amazon"],
    "GPE": ["Netherlands", "France", "China"],
}

text = """Sony was founded in Japan."""

nlp = spacy.load("en_core_web_lg")
nlp.add_pipe("concise_concepts", config={"data": data, "ent_score": True})
doc = nlp(text)

print([(ent.text, ent.label_, ent._.ent_score) for ent in doc.ents])
# output
#
# [('Sony', 'ORG', 0.63740385), ('Japan', 'GPE', 0.5896993)]

use gensim.word2vec model from pre-trained gensim or custom model path

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

# model from https://radimrehurek.com/gensim/downloader.html or path to local file
model_path = "glove-twitter-25"

nlp.add_pipe("concise_concepts", config={"data": data, "model_path": model_path})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concise-concepts-0.4.2.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

concise_concepts-0.4.2-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file concise-concepts-0.4.2.tar.gz.

File metadata

  • Download URL: concise-concepts-0.4.2.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.8.2 Windows/10

File hashes

Hashes for concise-concepts-0.4.2.tar.gz
Algorithm Hash digest
SHA256 ee1a622f7aabbb85c9068a24008268b1110d2cb0634da054deb22fad54e25da5
MD5 a4c686558eba62f265bb8424f08e2240
BLAKE2b-256 7d87d9207c2db057a97fbc52be1723a66a99ccc643b0f2939da615136fd5d584

See more details on using hashes here.

File details

Details for the file concise_concepts-0.4.2-py3-none-any.whl.

File metadata

File hashes

Hashes for concise_concepts-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ed5cefc106825296364dac2fe0a0afa2e3b1f5c94d88c9d499f23fa792ac3167
MD5 4a6df7c38674054c15d30529af8cc881
BLAKE2b-256 ced6f526eacdd800d334b937b832f92fccf8f388f705b7b324a1024ae5bd7d0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page