Skip to main content

This repository contains an easy and intuitive approach to few-shot NER using most similar expansion over spaCy embeddings. Now with entity confidence scores!

Project description

Concise Concepts

When wanting to apply NER to concise concepts, it is really easy to come up with examples, but pretty difficult to train an entire pipeline. Concise Concepts uses few-shot NER based on word embedding similarity to get you going with easy! Now with entity scoring!

Python package Current Release Version pypi Version PyPi downloads Code style: black

Install

pip install concise-concepts

Quickstart

import spacy
from spacy import displacy
import concise_concepts

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

text = """
    Heat the oil in a large pan and add the Onion, celery and carrots. 
    Then, cook over a medium–low heat for 10 minutes, or until softened. 
    Add the courgette, garlic, red peppers and oregano and cook for 2–3 minutes.
    Later, add some oranges and chickens. """

nlp = spacy.load("en_core_web_lg", disable=["ner"])
# ent_score for entity condifence scoring
nlp.add_pipe("concise_concepts", config={"data": data, "ent_score": True})
doc = nlp(text)

options = {"colors": {"fruit": "darkorange", "vegetable": "limegreen", "meat": "salmon"},
           "ents": ["fruit", "vegetable", "meat"]}

ents = doc.ents
for ent in ents:
    new_label = f"{ent.label_} ({float(ent._.ent_score):.0%})"
    options["colors"][new_label] = options["colors"].get(ent.label_.lower(), None)
    options["ents"].append(new_label)
    ent.label_ = new_label
doc.ents = ents

displacy.render(doc, style="ent", options=options)

use specific number of words to expand over

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

topn = [50, 50, 150]

assert len(topn) == len

nlp.add_pipe("concise_concepts", config={"data": data, "topn": topn})

use word similarity to score entities

import spacy
import concise_concepts

data = {
    "ORG": ["Google", "Apple", "Amazon"],
    "GPE": ["Netherlands", "France", "China"],
}

text = """Sony was founded in Japan."""

nlp = spacy.load("en_core_web_lg")
nlp.add_pipe("concise_concepts", config={"data": data, "ent_score": True})
doc = nlp(text)

print([(ent.text, ent.label_, ent._.ent_score) for ent in doc.ents])
# output
#
# [('Sony', 'ORG', 0.63740385), ('Japan', 'GPE', 0.5896993)]

use gensim.word2vec model from pre-trained gensim or custom model path

data = {
    "fruit": ["apple", "pear", "orange"],
    "vegetable": ["broccoli", "spinach", "tomato"],
    "meat": ["beef", "pork", "fish", "lamb"]
}

# model from https://radimrehurek.com/gensim/downloader.html or path to local file
model_path = "glove-twitter-25"

nlp.add_pipe("concise_concepts", config={"data": data, "model_path": model_path})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concise-concepts-0.5.0.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

concise_concepts-0.5.0-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file concise-concepts-0.5.0.tar.gz.

File metadata

  • Download URL: concise-concepts-0.5.0.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for concise-concepts-0.5.0.tar.gz
Algorithm Hash digest
SHA256 b6ceeed26166e235bbc8dfce4511b85cf3911e9d9f231cd24bdf82cc3a965ef1
MD5 546b44799b27d47618c5082ee2aaf759
BLAKE2b-256 8918fafd41543af9a7b73c9a8c3f4f5844169dcd7357985ab46f6f8b60e9aaa1

See more details on using hashes here.

File details

Details for the file concise_concepts-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for concise_concepts-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2cf2d47b5ef0cfcf8bb4b2557f880c864503e2cd2a2c33ea21107d5cb5d70dba
MD5 3eb9c5b884d9310437869c39fe2d560f
BLAKE2b-256 95b077333341a886a66395a7cd2713a0037a7a49f91adb3230896a8f55c627ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page