Create minimal docker images from conda environments
Project description
Conda Docker
Conda Docker is an extension to the docker concept by having declarative environments that are associated with docker images. In addition this tool does not require docker to build images. Thus allowing for interesting caching behavior and tricks that docker would not normally allow.
Features:
docker
is not needed to build images- declarative environments that map 1:1 to docker images
- significantly faster build times since builds can take advantage of package cache
- interesting opportunities for layering (e.g. mkl gets separate layer)
- no dependencies allowing for library packaged as zipapp
Quickstart
Build conda docker image from command line:
conda docker build -b frolvlad/alpine-glibc:latest \
-i example-image:123456 \
-o demo.tar \
numpy numba flask
Examples using Library
Downloading docker images without docker!
from conda_docker.registry.client import pull_image
image = pull_image('frolvlad/alpine-glibc', 'latest')
Modify docker image from filesystem
from conda_docker.docker.base import Image
from conda_docker.registry.client import pull_image
image = pull_image('continuumio/miniconda3', 'latest')
image.remove_layer()
image.name = 'this-is-a-test'
image.add_layer_path('./')
image.add_layer_contents({
'this/is/a/test1': b'this is test 1',
'this/is/a/test2': b'this is test 2'
})
image.layers[0].config['Env'].append('FOO=BAR')
image.write_file('example-filter.tar')
Build conda docker image from library
from conda_docker.conda import build_docker_environment
build_docker_environment(
base_image='frolvlad/alpine-glibc:latest',
output_image='example-image:123456',
packages=[
'numpy',
'numba',
'flask',
],
output_filename='demo.tar')
How does this work?
Turns out that docker images are just a tar collection of files. There
are several versions of the spec. For v1.0
the specification is
defined here.
Instead of writing down the spec lets look into a single docker image.
docker pull ubuntu:latest
docker save ubuntu:latest -o /tmp/ubuntu.tar
List the directory structure of the docker image. Notice how it is a
collection of layer.tar
which is a tar archive of filesystems. And
several json files. VERSION
file is always 1.0
currently.
tar -tvf /tmp/ubuntu.tar
Dockerhub happens to export docker images in a v1
- v1.2
compatible
format. Lets only look at the files important for v1
. Repositories
tells the layer to use as the layer head of the current name/tag.
tar -xf /tmp/ubuntu.tar $filename
cat $filename | python -m json.tool
For each layer there are three files: VERSION
, layer.tar
, and
json
.
tar -xf /tmp/ubuntu.tar $filename
cat $filename
tar -xf /tmp/ubuntu.tar $filename
cat $filename | python -m json.tool
Looking at layer metadata.
{
"id": "93935bf1450219e4351893e546b97b4584083b01d19daeba56cab906fc75fc1c",
"created": "1969-12-31T19:00:00-05:00",
"container_config": {
"Hostname": "",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": null,
"Cmd": null,
"Image": "",
"Volumes": null,
"WorkingDir": "",
"Entrypoint": null,
"OnBuild": null,
"Labels": null
},
"os": "linux"
}
Looking at the layer filesystem.
tar -xf /tmp/ubuntu.tar $filename
tar -tvf $filename | head
References
- Docker Registry API Specification
- Docker Image Specification
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file conda-docker-0.0.3.tar.gz
.
File metadata
- Download URL: conda-docker-0.0.3.tar.gz
- Upload date:
- Size: 14.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a9fc6fecd486e1f425dbd8ba85ec55650448fa9714b5e7e0241a48479c11d41 |
|
MD5 | 0e84a9de2c402eb9337e8fd90a70c63f |
|
BLAKE2b-256 | 17ab200f8f4a607bdd08b90a48a83376cafba5726987de10e4eb753bd4598269 |