Skip to main content

Convert data from hexagonal pixels to cartesian grid

Project description

Hexagonal-cartesian grid conversion

This is an implementation of (part of) the algorithm described in Condat et al. Reversible, fast, and high-quality grid conversions, IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 679-693, May 2008. It transforms data sampled on a hexagonal grid, such as an X-ray detector with hexagonal pixels, into a conventional cartesian lattice.

Specifically, it implements what that paper describes as a Type II fractional delay filter, with N=2.

This package is based on code written by Andreas Scherz and Rafael Gort.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

condat_gridconv-0.1.tar.gz (107.7 kB view details)

Uploaded Source

Built Distributions

condat_gridconv-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (369.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (372.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (373.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (349.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

condat_gridconv-0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (350.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file condat_gridconv-0.1.tar.gz.

File metadata

  • Download URL: condat_gridconv-0.1.tar.gz
  • Upload date:
  • Size: 107.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for condat_gridconv-0.1.tar.gz
Algorithm Hash digest
SHA256 04b22aabe787f800f6797ff862383a9799ea4d4ce929372a9188b78f18818275
MD5 2c7036c86bb0c84cd0edcd76d9ec0a0b
BLAKE2b-256 fe22d09b0ab676fa7bc82a752c3126793c69adbd3e6bf9a8790b25cd8a5ba3e8

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d1663639e731820014ad27748c6b0fffdb7f44a046fdc801dbcd8d3dd6748fb
MD5 4819fbdb9efd44a397cb44897d1c2eef
BLAKE2b-256 edf0788c834a5efd1223c726ea3ad1225bbc931955e52d1092b534542800c3ae

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08edb1542d013e59f828280cdfbe7e913bca5472ed56617e536fe59886030d26
MD5 f2d20ad2e097b5e202a673ff3681a7d1
BLAKE2b-256 77f32cc940a389e2c2c1afb8384fb004a18456e23a8ed249928a599bb61b0958

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 416447c002d33a402847a9a6048bbd1d8a9240253c676ea7076318a165f3f8af
MD5 bf0f83f2808332fcc94a8119b285e913
BLAKE2b-256 81b1c1ed6eab424db27c31149cfca3b2a1717879b9d433bd5c09c466783ad474

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 680b739fe1791c5abe38a6571e33e17febdc62f6420e0644879dc21cae799838
MD5 32ee75a7d4ce6702eb28217ee23b9903
BLAKE2b-256 5db7f51f2c1f4e0674b536d3458731b875b3d1ddbcf4f04bdf321ba255856d78

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac84e02485e30edf00c0fc6a976516af81be3379eab32cd2b3d439ef2040b4c2
MD5 942e07b47ad6467106e061251359f733
BLAKE2b-256 3d64e51947a1565ecaeb22c3cd85d29f00429fbc929f6c8fa058e24fad9f68b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page