Skip to main content

Convert data from hexagonal pixels to cartesian grid

Project description

Hexagonal-cartesian grid conversion

This is an implementation of (part of) the algorithm described in Condat et al. Reversible, fast, and high-quality grid conversions, IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 679-693, May 2008. It transforms data sampled on a hexagonal grid, such as an X-ray detector with hexagonal pixels, into a conventional cartesian lattice.

Specifically, it implements what that paper describes as a Type II fractional delay filter, with N=2.

This package is based on code written by Andreas Scherz and Rafael Gort.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

condat_gridconv-0.2.tar.gz (4.5 kB view details)

Uploaded Source

Built Distributions

condat_gridconv-0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (100.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (101.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (101.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file condat_gridconv-0.2.tar.gz.

File metadata

  • Download URL: condat_gridconv-0.2.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for condat_gridconv-0.2.tar.gz
Algorithm Hash digest
SHA256 31078aa05f9bf79c66ad8b05cc63eff88ce1cb86f96b7d0b8ed088681189da44
MD5 e4f69c13fbd1c56cb72896e31df69f7b
BLAKE2b-256 5e9bee3cfdc2a7b64489bbc87f532bbe26d07f2b60dcd3ab9e881b57f411fd0f

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aeb1e14a2f1a59bfd8fcdbf7d11e85d033a7b45964b7e5f04f0f25e8d23e1a0e
MD5 4e322e4def3318630e7b232d1d14c96c
BLAKE2b-256 c1e44d990b19fb7fa7088894e4d0a0b9c68b853fee2be394513f0918e429fad2

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4b7d73d8cad9a742af69818ecdfaaf08a147ef6c1f890a768d03ef816d55b5b
MD5 7735ff2a647d579179dd54ce728bcf50
BLAKE2b-256 4506c3af5e3788ad2caeeaa5c2950bfdbb403396fc7e7552c6cb5a3be0120692

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14941193b9c34aca23ab68fd2c7accae45438c863187c02028d424060c39c467
MD5 6afee267828f0c42325534a489b42b91
BLAKE2b-256 8da395613a8ab0af951bf2ac9da93f03891b56ba4f789cced97cca6795a4d520

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page