Skip to main content

Constrained linear regression in scikit-learn style

Project description

constrained-linear-regression

PyPI version

This is a Python implementation of constrained linear regression in scikit-learn style. The current version supports upper and lower bound for each slope coefficient.

It was developed after this question https://stackoverflow.com/questions/50410037

Installation: pip install constrained-linear-regression

You can use this model, for example, if you want all coefficients to be non-negative:

from constrained_linear_regression import ConstrainedLinearRegression
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
X, y = load_boston(return_X_y=True)
model = ConstrainedLinearRegression(nonnegative=True)
model.fit(X, y)
print(model.intercept_)
print(model.coef_)

The output will be like

-36.99292986145538
[0.         0.05286515 0.         4.12512386 0.         8.04017956
 0.         0.         0.         0.         0.         0.02273805
 0.        ]

You can also impose arbitrary bounds for any coefficients you choose

model = ConstrainedLinearRegression()
min_coef = np.repeat(-np.inf, X.shape[1])
min_coef[0] = 0
min_coef[4] = -1
max_coef = np.repeat(4, X.shape[1])
max_coef[3] = 2
model.fit(X, y, max_coef=max_coef, min_coef=min_coef)
print(model.intercept_)
print(model.coef_)

The output will be

24.060175576410515
[ 0.          0.04504673 -0.0354073   2.         -1.          4.
 -0.01343263 -1.17231216  0.2183103  -0.01375266 -0.7747823   0.01122374
 -0.56678676]

You can also set coefficients lasso and ridge if you want to apply the corresponding penalties. For lasso, however, the output might not be exactly equal to the result of sklearn.linear_model.Lasso due to the difference in the optimization algorithm.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

constrained_linear_regression-0.0.5.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file constrained_linear_regression-0.0.5.tar.gz.

File metadata

  • Download URL: constrained_linear_regression-0.0.5.tar.gz
  • Upload date:
  • Size: 6.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/7.1.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for constrained_linear_regression-0.0.5.tar.gz
Algorithm Hash digest
SHA256 f7a8721d4cbe5b5a5a450c01c728bb25ae9b7efde39a6ff2ec4b36c5af432e85
MD5 9235e043c72cdbf2313f3f89071eadba
BLAKE2b-256 f60b12aa3fdadf40e1c9f1bc3a6c53ceab193c7ba01c51a7b995d2aca7fd8a78

See more details on using hashes here.

Provenance

File details

Details for the file constrained_linear_regression-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: constrained_linear_regression-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 7.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/7.1.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for constrained_linear_regression-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e628b340a920beb50294f6c6f50ff993e602b259f3c7eeb9b15889f23c10bfaa
MD5 fa4b785d04446a933107391a4417d969
BLAKE2b-256 5d829d7f62455227d7631e267ceead8d99ea08a1216684446c1a2051a14def1a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page