Skip to main content

Calculating contours of 2D quadrilateral grids from Python

Project description

ContourPy

Python library for calculating contours of 2D quadrilateral grids.

Work in progress...

Will include current and previous Matplotlib contouring algorithms, plus a new faster and more flexible one. Intention is to allow Python libraries to use contouring algorithms without having to have Matplotlib as a dependency.

To build and install using a new virtual environment

python3 -m venv ~/venv
. ~/venv/bin/activate
pip install -v .

To build and install in developer's mode

pip install -ve .

To build in debug mode, which enables asserts in C++ code

CONTOURPY_DEBUG=1 pip install -ve .

To run tests

pip install -ve .[test]
pytest

To build docs

pip install -ve .[docs]
cd docs
make html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

contourpy-0.0.1.tar.gz (68.4 kB view details)

Uploaded Source

Built Distributions

contourpy-0.0.1-cp39-cp39-win_amd64.whl (146.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

contourpy-0.0.1-cp39-cp39-win32.whl (131.5 kB view details)

Uploaded CPython 3.9 Windows x86

contourpy-0.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (242.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

contourpy-0.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (254.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

contourpy-0.0.1-cp39-cp39-macosx_10_9_x86_64.whl (208.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

contourpy-0.0.1-cp38-cp38-win_amd64.whl (148.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

contourpy-0.0.1-cp38-cp38-win32.whl (131.5 kB view details)

Uploaded CPython 3.8 Windows x86

contourpy-0.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (242.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

contourpy-0.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (254.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

contourpy-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl (208.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

contourpy-0.0.1-cp37-cp37m-win_amd64.whl (148.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

contourpy-0.0.1-cp37-cp37m-win32.whl (132.4 kB view details)

Uploaded CPython 3.7m Windows x86

contourpy-0.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (240.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

contourpy-0.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (251.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

contourpy-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (202.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file contourpy-0.0.1.tar.gz.

File metadata

  • Download URL: contourpy-0.0.1.tar.gz
  • Upload date:
  • Size: 68.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 361f74a7ecfb0796e95372d6ec3882cd25c9adcd7ecabeb33f3ed152202d253c
MD5 5fa4154099f699ba3bf5ac2eaa2fb685
BLAKE2b-256 26108ba55446b75fef8770d5b2e1685244ecf334d0155e0051c863c76d8441d3

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 146.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 223e0fabfa3c9dec34c3697c747875d313b7f343e5caaf5baeabae309fb81f5c
MD5 8f362714a76cf82b71f8a23b3d201fae
BLAKE2b-256 5fc738af6ed6f90e5829a17f6e8eb717a15700c067bc00d50d8aabc238812b55

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 131.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7f803870aa21a80e39d3ad8dba85f67ac05814659c84f0a10a5a9b9a03b2b489
MD5 27c355ba2714fa0a0f2f38ef6eba19da
BLAKE2b-256 02cd89f6eafe6230989aebc8ab0185871d90934ccc02ed230e8072ae6862702f

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bd88347551e6275294bac378faa696b70b51517f22713d77aa8129b514e9c073
MD5 1945f6c36a3c49bcdf3cdabc73ccd0d5
BLAKE2b-256 b6d5c4b88b265edd0debe63d7fb2d2203878cfc8aae6de247a3d52b55602826d

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 426a47c2b613a6b07a9e7daceff44b4ed63bd41bd718ff63d4e810d1fa2f0bbe
MD5 be48cba6a6f1a68f1a73c9d8674e4697
BLAKE2b-256 aa62938c5d767ea8162c262f6506555e84884e6e18de1b527479967c3fb1121a

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 208.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77f77237166ce790997b6654bd0ae65a86e15026892e428b979c53271c952904
MD5 7889ff3063882166a0089853d63d3d40
BLAKE2b-256 77d842f719716e6c82711c81445c3791152b48e94aa0b4a1d6b0694fc290421d

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 148.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 75098f9714309d923bac021469af9c9ce3232c3f69a8da5ff11d5ef5091b60b4
MD5 93052b19ca88f9116068e35b75f0d3d1
BLAKE2b-256 714b6fb75f3fbe0417e5670eb67515c3986397538a7ffdfe2fdcc74f03c8d166

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 131.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f3e5bae5dc04ae52964c38fd6bd21a82493ecbf75045f35c2dbb7289249865ab
MD5 fc86ed267cb651a8f677abd7a5b0d88e
BLAKE2b-256 ebddd34f80443b9cbc403bf155b0c7d2c1fb6652d03433972720f4fed2742d3b

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fe779257aeecf1f7ad2af5f515e355c73149da38dfa9c81dce05007f2bd8b3e7
MD5 88b900e781236304dcc487328920dea3
BLAKE2b-256 a2d047448aef8ba8dd2211e086a258aaba2fa703ee6c909b695c685e94b9f659

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 53681a55ea1f65bc97a8ed9fdbe6330807e7ccd99c2f37883a36722660584c05
MD5 71380b7b99d9e0dd7a0b0cfe2b40b6ff
BLAKE2b-256 b84ae0746cad929124b36fe3d828e696b4db20c84594b0e51581063eb0851273

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 208.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ddfe3ea50ab372209bc03d904ef53095eedeff319260325d72a4c38bbd442ac
MD5 202f84547ce3b4396f052dd83ac29782
BLAKE2b-256 784eabed2b651be2b174d948e47bdfedc35ba037f16d0a10faf9f1766e239e2c

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 148.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4884e5bd6b40190a781af4ad5d29e44236440c268a39adb5141928830670e3cf
MD5 58ebaf5f3463d2504579dd9e041d96b6
BLAKE2b-256 8c320f6404cc6c675c732f685be06d4df78c90d7e6e3cb163256389a564d0a4c

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 132.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f04445a1e273152c14d05a50a9a06c0f9d5479e08f7b58fa925721c80a7c8459
MD5 24deeb68653c6b4177553ebcc2f059fb
BLAKE2b-256 622fba59bed4f5e7a84bf629b431577d75d2a01b1fd23b4d38a568da24c11f93

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7601c5e7a2db2f0e5c09e7ce5ec82cd036013d8a1905a04bccec07763f436d43
MD5 d9a2725914d59d8d029636e8ec9e14e4
BLAKE2b-256 947642faed2a098cfa34034972825595724a127ceb4ed286006bb47eaf0c88ee

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6c8eba9a524d34b51f4aabca804853edceb776de99aa7514c0a5447d7a39b1f2
MD5 f74c747a0098f293401630ef111df916
BLAKE2b-256 fb036ecb146f01da1c83c0467af00ac98f22e8ddb2b03eeb539599fc682a380f

See more details on using hashes here.

File details

Details for the file contourpy-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 202.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f79b3438c7c83b89f684bae690c4d186b84f04a8287b0b64fd47d3031456631
MD5 107c391caff0619b3796de723cd05a28
BLAKE2b-256 9a233786e6840f5e8c751d353aea6005e6f3b9a1438296b3a0155aca874ac33b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page