Skip to main content

Calculating contours of 2D quadrilateral grids from Python

Project description

ContourPy

Python library for calculating contours of 2D quadrilateral grids.

Work in progress...

Will include current and previous Matplotlib contouring algorithms, plus a new faster and more flexible one. Intention is to allow Python libraries to use contouring algorithms without having to have Matplotlib as a dependency.

To build and install using a new virtual environment

python3 -m venv ~/venv
. ~/venv/bin/activate
pip install -v .

To build and install in developer's mode

pip install -ve .

To build in debug mode, which enables asserts in C++ code

CONTOURPY_DEBUG=1 pip install -ve .

To run tests

pip install -ve .[test]
pytest

To build docs

pip install -ve .[docs]
cd docs
make html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

contourpy-0.0.2.tar.gz (69.2 kB view details)

Uploaded Source

Built Distributions

contourpy-0.0.2-cp39-cp39-win_amd64.whl (146.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

contourpy-0.0.2-cp39-cp39-win32.whl (131.5 kB view details)

Uploaded CPython 3.9 Windows x86

contourpy-0.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (242.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

contourpy-0.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (254.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

contourpy-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl (208.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

contourpy-0.0.2-cp38-cp38-win_amd64.whl (148.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

contourpy-0.0.2-cp38-cp38-win32.whl (131.5 kB view details)

Uploaded CPython 3.8 Windows x86

contourpy-0.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (242.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

contourpy-0.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (254.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

contourpy-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl (208.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

contourpy-0.0.2-cp37-cp37m-win_amd64.whl (148.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

contourpy-0.0.2-cp37-cp37m-win32.whl (132.4 kB view details)

Uploaded CPython 3.7m Windows x86

contourpy-0.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (240.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

contourpy-0.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (251.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

contourpy-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (202.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file contourpy-0.0.2.tar.gz.

File metadata

  • Download URL: contourpy-0.0.2.tar.gz
  • Upload date:
  • Size: 69.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2.tar.gz
Algorithm Hash digest
SHA256 f1f60ac37f66dbb3c87d07357d8c51a2ca07536f2c3dd54be4f111034968fb33
MD5 927d22fdcb3b7d15d064ee0b2c32d015
BLAKE2b-256 ecea0163fb357e2eef53475063f455332c6b0fb4c4f07f8b8e584d16d6fad60f

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 146.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0a415a4d8c0b017a7d849c60a3d70d70d8e9954746a5340591fdad6f9c4e0702
MD5 380dbc52f23b0afc3419f23c6ec444e6
BLAKE2b-256 0725831297e9576644d15278bb0758b2ecab4ac65767b3bdf49c4c3f45894748

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 131.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4acb9f6a0c0f76e8291c6e8666c7bc6ce121881242f9a435becc17a1e7bd857b
MD5 03e3c93f1a5725edeafd073617ede660
BLAKE2b-256 51dd6e357c8a43ac7d584156c35205f2e833bef7163e4dd6866c2a645f0bb565

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 90b272937ca04c01a75ee8ceb1f276fc585fc0ac54f9f878b76228dca9398e3a
MD5 d7272410060cc5dabb03937a7e050278
BLAKE2b-256 cdd76c1b527c3fb403a4cd1719ebf9edbd2ef35a68143af618ea8e61880c2c2c

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 71754c0a59509ba1f5a3ffd4a08c987d0daa0c397b1af158096e2c43e09d8614
MD5 22c8768ed0e5f0b088bfd27d8202ede9
BLAKE2b-256 afc4865d22ad55bcc7692332bc43d64d87f4a5786e5299144703ddf746d69fb8

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 208.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1bca7604d478b404234ee2f3c20eec3524e551416c9028fafc7f10d78156ce3c
MD5 a80d2996e722df9be686af2eeccf0ca9
BLAKE2b-256 4d173ef0b84f672732b119e8361eac04df7132c1f55d7771f6640c7caadcf0c6

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 148.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 73a362a324481d24ebcb3e53d61fad0fabba6ad97ef665dabda6cb2cf09a224a
MD5 2b010114f8f24a772a8bd37745500473
BLAKE2b-256 eb7e03be77f65289dca9b7d6b34e04f8e529765c9e0908d38df717537d85dc54

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 131.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 aa1cae4459079e0026fb2bfc1e93b434dc9ead85e8b62a9c77722432a69c311a
MD5 851f72162425c96ffce4bc7d8321f841
BLAKE2b-256 b4b3145c3df362615c67adb9380c9400383cdc49c4f167ee57544ba41d1c3a82

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7067399a43754315d1618716cd0febf770beaed4b01b08d8351b4d82b1ba1410
MD5 22863328531fe3603b9e669f65bef9af
BLAKE2b-256 f0f9b2b1034f88a7d66fccb2b80b914723777ce46e83d55510f58c1e16f122ef

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5982bed6dda013f8e0f0fb58cdb6ce00e89c98084793b25aeb95def09cc7b79f
MD5 8f7679904b19dfd93d3dec4604ce1100
BLAKE2b-256 e64011b2e4030c128f5e8db4e660e5898baaa63638ce9d23a2803fb689d88e85

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 208.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57c587f50e86457b1fd97ac05efe7ea121a850bb5d7a0a154d840240c28b0dfd
MD5 2eeb0129da9b4df019373be83c62261e
BLAKE2b-256 150ee66141833732cca2d645c30d1ee01d643ce4012374a0c694cd1e4416afca

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 148.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9c1e95ac3d65890d9ed4cde9f71216f5746264e515a7d6f6c499882be5200487
MD5 659e68ddac31957dee03138251ca0cf7
BLAKE2b-256 dbe5de682b7c402a2f2070279d8527f6576a50efacc3b3726592162c2f598019

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 132.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b35942556d6535563c89a006f40e848cf6557164dd012164e3bb67433258882b
MD5 555090f1bc69692fefa6635a05418cca
BLAKE2b-256 b9af117574dea5e5b4586562ee17d5db5692fcb183061a987534c9f03de01563

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f8e4f3291d7266e113fa5f11320dfc6cec56d6a8b0821bc9ef11ef1a03845aa1
MD5 023e5bb82ddb2651b91b3de1aaac344d
BLAKE2b-256 9f14a59a23da465adf7c2905cda832eaf90321208fffd6fed79ac5861a6b19d9

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e4f14bd982e1f586b6519fa9ade67ed23829388938f326dd9b36b5e7cae88d41
MD5 e8527435978155efad93e3b16dda2d8a
BLAKE2b-256 6386adbb1ec0cdef10cc46e36d69c5b7248fdd299d67a2f01392d30b1fca7a85

See more details on using hashes here.

File details

Details for the file contourpy-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 202.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1adc263d2a93ef3de6bdcf0935a029a567b0421237df56440e556cb520590fda
MD5 4061627d7ba7999aee067c1185b48f1b
BLAKE2b-256 b2b025cbce2d6bbe82cc1cba5242094137045c23579afebb4502d9327aae862f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page