Skip to main content

Calculating contours of 2D quadrilateral grids from Python

Project description

ContourPy

Python library for calculating contours of 2D quadrilateral grids.

Work in progress...

Will include current and previous Matplotlib contouring algorithms, plus a new faster and more flexible one. Intention is to allow Python libraries to use contouring algorithms without having to have Matplotlib as a dependency.

To build and install using a new virtual environment

python3 -m venv ~/venv
. ~/venv/bin/activate
pip install -v .

To build and install in developer's mode

pip install -ve .

To build in debug mode, which enables asserts in C++ code

CONTOURPY_DEBUG=1 pip install -ve .

To run tests

pip install -ve .[test]
pytest

To build docs

pip install -ve .[docs]
cd docs
make html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

contourpy-0.0.3.tar.gz (69.2 kB view details)

Uploaded Source

Built Distributions

contourpy-0.0.3-cp39-cp39-win_amd64.whl (146.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

contourpy-0.0.3-cp39-cp39-win32.whl (131.6 kB view details)

Uploaded CPython 3.9 Windows x86

contourpy-0.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (242.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

contourpy-0.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (254.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

contourpy-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl (208.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

contourpy-0.0.3-cp38-cp38-win_amd64.whl (148.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

contourpy-0.0.3-cp38-cp38-win32.whl (131.6 kB view details)

Uploaded CPython 3.8 Windows x86

contourpy-0.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (242.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

contourpy-0.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (254.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

contourpy-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl (208.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

contourpy-0.0.3-cp37-cp37m-win_amd64.whl (148.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

contourpy-0.0.3-cp37-cp37m-win32.whl (132.5 kB view details)

Uploaded CPython 3.7m Windows x86

contourpy-0.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (240.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

contourpy-0.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (251.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

contourpy-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl (202.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file contourpy-0.0.3.tar.gz.

File metadata

  • Download URL: contourpy-0.0.3.tar.gz
  • Upload date:
  • Size: 69.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3.tar.gz
Algorithm Hash digest
SHA256 0d4249ccab1746cdc6d74dbd8f38bab92e5a2da6d0b08fc66889c547b9d74794
MD5 75b19ea302e0e454144f334e319d0a20
BLAKE2b-256 9602ef9ed5d09481e4836b90b440190bf21022a7e899eac3eb2fb073af87fc96

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 146.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 918ed217a0ee93bfccc7f2ebbf18f5d892e940b60804b2d4cd48c63d048f63b2
MD5 0fdb8cf46502917d241e0fb54720cb5f
BLAKE2b-256 ecaf664e6bac9c1ae36468d0eeb2c16f091167c4652febb1fbf06578e5b6b66b

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 131.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 66f4215417ac731aee190ba6cfd99d50f3bba72bfd5b7e6b95475ea8ec83d8af
MD5 a32d5874878c3caa0a376d17fdd04287
BLAKE2b-256 aaea92220db64ff14cee1b443ff0313bd70bc1697e9442d1e564ba6fc3334fd5

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 35a904a7b48fc689b477bab84df3553604a7b16a10f6b185dc7d36aced9d16c0
MD5 35b1685960ec2e82dcf6f3c87e5cf335
BLAKE2b-256 8c912c60732d644525561e35c345a46e7260db67f78c8786ff2a2b63821555dd

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 acd497dc24b380c0931707535c729b151198877c9b084bc747e49394779fcdf7
MD5 ba29af78e20680e0347d585290a90598
BLAKE2b-256 26a3c946b30e10ccf35c9b7c41a07aabc37c3f124474e713ef8f8492d5cf6973

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 208.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cde69a01d71ede4d3d82dce93da3b0ae424616f9f2101a1b6af2c148ad392ac7
MD5 e4637b0760f7d228c58086f12c3e9e5a
BLAKE2b-256 f73e62813018ac2ea35eef5255bcc1a2e931e032956dbdd6e4941857c84c0265

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 148.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2a568d6ec99f40a10696a97a0ff45748622e3113a0f3fa3a9114c93a5366acff
MD5 3660a706972d7dd90b4a66a787c4468b
BLAKE2b-256 9617df9be2c2b317c0ae06ae9ad35692347591fee9610a152a68e213fdbeb2f3

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 131.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d4a3461e7cbf9b0faedb1976cbf69d9525bc003582edf712e46ed68410f362ab
MD5 a9011394fbc76bec861ee52c9f6300d8
BLAKE2b-256 2ac9d3824f5f77693544e2658547eab507f2838259652d70a0bd41fbdecfc7d7

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0b510510423c7efee1013b6c8b33b4b57d2fdfc8b4e363c9daa83f0540255478
MD5 5ce49388f2536496b0e8eb69a340a118
BLAKE2b-256 02e3d0f36a44254beebc9acf46c699c3cf293239d0c84e81242d92019089471b

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d8719bd39ad1128149379721abe155c9b7935f52072d544a5ce45823f9a15c7b
MD5 cfc88a7f46595c89ad85fdbc964c9783
BLAKE2b-256 e2518a85d0d113a680c2cf52103d2cc6ae0cbcf9d31a3b1997c6b385de729281

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 208.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 437cc7c3d90389040138c847fa6ef157f0cba761add72a8d5d21273d54230445
MD5 ab1c09dd3410020547703a5552d5d418
BLAKE2b-256 a8848481d4757aa61c8509e45520e632aa658ad136f932654fff39b90c75e1da

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 148.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c8a5ca42fdf6157873fe0250a9dd740362ba8bee5896c40867847b0d720a1db6
MD5 fa26eb831a9018176ae28862e4136b96
BLAKE2b-256 cdf77600e3b8dc1f9f2b5fd08957a5579363739a6538aec65b3b0f460ac48b85

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 132.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c37324e7532bb1695b10de4d2b2b65af43f287aa95ef764bf0185e1dd74cfd0a
MD5 2dc9aa3509ed9acf9bf4b0d1b93c444e
BLAKE2b-256 269159df612126a2d71d81aac6d28f3b336a20b3a3602c5fd179ad1f56f2abbb

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-0.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e2d01cccc472b31f2352f8cf8bdd38451afb02a6c5373b263f0fc18f8df32b1f
MD5 89489b8136b374124a1e6522f0244812
BLAKE2b-256 dff898df48a7f42da0120222be383d8008833b0c8d7368c2c4fcf9a45a7c9cde

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for contourpy-0.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f05d13d014841ab2f0457f4f25fcb1f52e2fac513d89b3025f38ad8509ecb8ef
MD5 53721b36cdfb39668a6bd007a2b78845
BLAKE2b-256 69fbfd1e7804b25f5ea609a948affbd99854eb7bd34021e852dae8ff9d33abf9

See more details on using hashes here.

File details

Details for the file contourpy-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: contourpy-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 202.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for contourpy-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffee1963b22cb83e7a300b83750d9f60969334daf2084573560e088631a5ae9d
MD5 3278def80572f6f9fbd900f2bccadd79
BLAKE2b-256 b5a5be082df4882f9bebb5f1a5faa52d730d34f892235f6930fc400acff9df2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page