Skip to main content

Python library for calculating contours of 2D quadrilateral grids

Project description

ContourPy

ContourPy is a Python library for calculating contours of 2D quadrilateral grids. It is written in C++11 and wrapped using pybind11.

It contains the 2005 and 2014 algorithms used in Matplotlib as well as a newer algorithm that includes more features and is available in both serial and multithreaded versions. It provides an easy way for Python libraries to use contouring algorithms without having to include Matplotlib as a dependency.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

contourpy-1.0.2.tar.gz (12.2 MB view details)

Uploaded Source

Built Distributions

contourpy-1.0.2-pp38-pypy38_pp73-win_amd64.whl (297.1 kB view details)

Uploaded PyPy Windows x86-64

contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (522.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (543.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (493.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

contourpy-1.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (444.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

contourpy-1.0.2-pp37-pypy37_pp73-win_amd64.whl (297.6 kB view details)

Uploaded PyPy Windows x86-64

contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (518.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (534.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (494.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

contourpy-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (225.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

contourpy-1.0.2-cp310-cp310-win_amd64.whl (158.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

contourpy-1.0.2-cp310-cp310-win32.whl (141.0 kB view details)

Uploaded CPython 3.10 Windows x86

contourpy-1.0.2-cp310-cp310-musllinux_1_1_x86_64.whl (784.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

contourpy-1.0.2-cp310-cp310-musllinux_1_1_i686.whl (845.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

contourpy-1.0.2-cp310-cp310-musllinux_1_1_aarch64.whl (759.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

contourpy-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (270.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

contourpy-1.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (281.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

contourpy-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (256.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

contourpy-1.0.2-cp310-cp310-macosx_11_0_arm64.whl (212.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

contourpy-1.0.2-cp310-cp310-macosx_10_9_x86_64.whl (231.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

contourpy-1.0.2-cp310-cp310-macosx_10_9_universal2.whl (426.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

contourpy-1.0.2-cp39-cp39-win_amd64.whl (155.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

contourpy-1.0.2-cp39-cp39-win32.whl (141.0 kB view details)

Uploaded CPython 3.9 Windows x86

contourpy-1.0.2-cp39-cp39-musllinux_1_1_x86_64.whl (785.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

contourpy-1.0.2-cp39-cp39-musllinux_1_1_i686.whl (845.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

contourpy-1.0.2-cp39-cp39-musllinux_1_1_aarch64.whl (759.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

contourpy-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (270.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

contourpy-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (281.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

contourpy-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (256.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

contourpy-1.0.2-cp39-cp39-macosx_11_0_arm64.whl (212.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

contourpy-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl (231.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

contourpy-1.0.2-cp39-cp39-macosx_10_9_universal2.whl (426.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

contourpy-1.0.2-cp38-cp38-win_amd64.whl (158.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

contourpy-1.0.2-cp38-cp38-win32.whl (140.9 kB view details)

Uploaded CPython 3.8 Windows x86

contourpy-1.0.2-cp38-cp38-musllinux_1_1_x86_64.whl (784.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

contourpy-1.0.2-cp38-cp38-musllinux_1_1_i686.whl (845.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

contourpy-1.0.2-cp38-cp38-musllinux_1_1_aarch64.whl (759.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

contourpy-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (270.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

contourpy-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (280.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

contourpy-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (256.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

contourpy-1.0.2-cp38-cp38-macosx_11_0_arm64.whl (212.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

contourpy-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl (230.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

contourpy-1.0.2-cp38-cp38-macosx_10_9_universal2.whl (426.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

contourpy-1.0.2-cp37-cp37m-win_amd64.whl (158.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

contourpy-1.0.2-cp37-cp37m-win32.whl (141.6 kB view details)

Uploaded CPython 3.7m Windows x86

contourpy-1.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl (785.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

contourpy-1.0.2-cp37-cp37m-musllinux_1_1_i686.whl (845.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

contourpy-1.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl (762.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

contourpy-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (268.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

contourpy-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (276.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

contourpy-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (256.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

contourpy-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (226.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file contourpy-1.0.2.tar.gz.

File metadata

  • Download URL: contourpy-1.0.2.tar.gz
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2.tar.gz
Algorithm Hash digest
SHA256 ea94bd4f15e3526e399c36ad18155d6a550fcd6fddb45cdaaaddedfb8e7e5a97
MD5 10f271e72a042db86c165fb90f5ff88b
BLAKE2b-256 0021649a9988dcffa4f3210eef7235d68cf00f178f5ffa3da2be584559f05274

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ff58f9d5529fedbb789995c479e22ff2a70efe769f334abb7ef25a37f74e6977
MD5 1cbf0b7dd8ce0ac6caef186db2ab9f1b
BLAKE2b-256 f7eb5549275819a6bc4a21dda0822778e9121ac459da927249ae02c9d395fbef

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 887dab7e9b5cd45df9812c112cf2527bcddee2dc4be49f222bc9e8c7fa4426af
MD5 7e79780c40882d48da13594bfdf46516
BLAKE2b-256 0d29093271129a22e5f2283d98e7e8f09270b6f6c29ad33b31986c87fe9c2401

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1234addc39bbf21495a5b0bddbc4102ac7340ed6d16bb4023bf15b122a63ab60
MD5 a461ae9d9abd1ca790e574eb80f1e776
BLAKE2b-256 599f77c7914afb91be415cdd84cd873f02d5a3c3a9f2bd990053d7f956bf57ca

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9a4531e7e98fe9dd547d551da0854da4ee11f298ab1608f9447ed772ae292ddf
MD5 cc0bb0c5c8eb4dd656cadd649c4b0f74
BLAKE2b-256 6fac7156a88c158307807003a6678f93ce603b5464903b0e476eed008dc6cf69

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0cd7d34c1858275102d37f33dd88db49b9d9ace3527d8ed87f71389e42d2af8e
MD5 226085de5e08a7048d9aa96a1b342409
BLAKE2b-256 9345649831f73d43f6aeb5ae619590d579b17b97d67e17fd11c44c5b93247110

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2c7ec30e623e0b751dd2546c738fc8c21bc686fb64a738ffa3b436cf65973260
MD5 bff145d1d6206b9666c7bde64edecc4b
BLAKE2b-256 509816b8ef9864c98e04fc92bb701eb61207c8606e46bfbe88a711ad768c012c

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7eb8d1f28dfd11a229505bc74d88bd2f877a1b70377d2d23549a51159a7ad02c
MD5 1925eeb98618bdf41c536d8387a0cdea
BLAKE2b-256 1d1cbd9a470a71201b09c137da3e4bea17ee5e123a6c1222ab62f2735bb17f98

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 56d69f5073a459b267cbe6823445385706966f63b04c3adc23569d4912d39fe1
MD5 5fc0e22c8f474e78a7ec8875704883b4
BLAKE2b-256 bbe7243f36920e33f43b6154eeb3e9a4e86a7486dd9e13839f7c6b411f4cbd59

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ba6ac6718f9d9cd815f58e038d1686e871995a27cd0097e16016669565da20b
MD5 811019b5c24747d8838b716906046404
BLAKE2b-256 89b8eca046d4e700311621c76d7fcbe6b7ed4278f1395cf73bd3f638d4c61479

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09c69d7e5173d42cb46b086e294a00ffbb656605b239ec8e2bc51abd8b666f6b
MD5 9de7e26f55fab15b34492828e77966b9
BLAKE2b-256 e35c46f475c91b5fd4e42487db6a6e7ca43b452fa5e0b052796678363b830e27

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e419aa8a85bb42b45586b20c10f8442473f78d372232aa281356d00c98b10a09
MD5 c0e980e6e12b3310498b63c63570f55f
BLAKE2b-256 5a4a72d5875b4ac0e49d1eeff41b12c982015a19499b0d840dde07237899dd9f

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: contourpy-1.0.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 141.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d707c8f291d5af8e214f2e5a96e5500d16e050a60ebe2dc10c1c7b2e0039b959
MD5 d07eff137c7b2e63e39e821d29541871
BLAKE2b-256 ecdc68d5e6ac0cdc675f5517d55123e98a750dc064923439e9f142829969c8af

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a08e3e4744e44a03f2103da71e6852c963068d8137c224083d35427e514074ca
MD5 256fc0c5be9e777d59f528f283bd0ccf
BLAKE2b-256 c368c7663610fbab4044a11382fde798c5989c79aa2df4e79b8f2930a420217b

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bc66f32293c0e79ba8ad6bb098036eb8895e64b2df6ab48cafa9ffa6d94404cb
MD5 0c3730ae0859fb63edb4b567e5cf547b
BLAKE2b-256 f20e3f7bf3fd005a66925d91207e4378512e7c2d016c014c37a64a463979b5fc

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 65b77aed55d690982235af0c97dc8c301a9ba3b5f72af3a969e899d9070da4e3
MD5 8ab2bef96d650c4e3671975112135be7
BLAKE2b-256 418760b869cf1808ffeda04551d8c2d81487aa593d1da5a9c4a9a49ac0e69533

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5efa6339bcb8fa8d0db634765eeb9d3e0e519f724bd0b5e97d922ff7cdc4c51
MD5 08fef2601335a883061f12525274654b
BLAKE2b-256 76825531a36df8260b211bd1d1a88db55c0f9dc0840e8e4873839022f4ee500c

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 862ccb1523de87388bc378a624fc77be84a490a2a46c2ca9d1dabeb709ee082f
MD5 c3d11fb29e23211c54d50f920a82898b
BLAKE2b-256 9e8315c6533655ec58b08244c94acf3a8af7652980fc72180c78e468aab125e8

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6071c80fd322c0756a5d19fec9397878ee647b451fd81383d392dbe3c665a33
MD5 89253d3f57710d3fd01386d813181d86
BLAKE2b-256 7c05e19f4882bed6c5af73ad9b8f178c1915d1a3cc88b9b881f6668b30b9beff

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7a9686a3b43e3753f1d6f9e58847010429fdc2fdc3f472e21ce4d2baf9ef272
MD5 2dd35b1f56a8c9e689d099bdbe17ef21
BLAKE2b-256 88377f80f391df6890a117f1163db14bb2956542d1f8851a3f36c263e056860a

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b43451351cc12e8631075f1eb8c9a6ded615c569a86094d1f833cef1daa880f5
MD5 7b9a43268663721fde8eaab8e398cf6b
BLAKE2b-256 2e5c8613f7b58aeb87bd9d87cdb9b12c0d831405e9f5d7a28cf5e0eefb52478a

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c127a10f8a4df0905a92f50fda78db7d4e700100175873360b76a9381be09ef9
MD5 9df43963e4d7662e3eb3a6819843a03a
BLAKE2b-256 1c28d3e912db8df56fd6c86b580239ef2eca63e6997cc95e000f915ad453de56

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: contourpy-1.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 155.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e14346f941aaad2bc98eeefbb4b1819c48f0b1b1ce87db98e4fbf2699b4451c9
MD5 be4556cf04df73bfb17b4e8108551fde
BLAKE2b-256 7f98e2516bd86fb23614ea24e49f8cc9e5b24f63604ca3f02490f238aa3ea926

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: contourpy-1.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 141.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5f341b6d10b2b0064c6ac0ab5ac3c059c65fc6edfca064420ac0c5e471419660
MD5 256f7df831772aa17ef3a80cd551e65f
BLAKE2b-256 27b0bb7ccd560ef57190a91fecd3f682c4afddcfdc770db78a4f9a9b910ef605

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e3b1d19c4ac16a8d824a7c37a9f80e855049d169f3c63bfd445dab5efc168a54
MD5 fd293944e904175b76e7039538e67b5b
BLAKE2b-256 1d4ad3efc55370d2783f49f009bf1fd7601bfc88488be8646bd971c4b20695a1

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a8626a85c1290489aed015ebe26ceef27407df9fa70d6dd2b4ad561caf8b84f8
MD5 738fdb8d330edc0427eb8a14c5a2a44e
BLAKE2b-256 8e7832d79ca903ff0d76d269e9dbd68dbaa36f87e1e515d708162bc33903345d

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5a6107d48d09137feab7fc8b9f2d0761ab6a8d9747b53cfb346cb801c263fa34
MD5 8f5daad85dd8f93e2295e6e5d82b8003
BLAKE2b-256 37524e538fa544d9fa936af9cb9d6a6ae90232d9da8f1aaa40d3e2a8039a2e32

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c4f7e1919e4fb15a620399eb92b594a9c67ceebfd5880d3f2509f83e9e3e167
MD5 6341539af51bae5aac474cb107790683
BLAKE2b-256 b3102655e9226ae5e12d1d2481572ac086c1cd6a46254475b63167ded2b09cb8

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cebf032b316349b6a0252a506a72fc9d6503a5a6d6abf9dadbd77ba680b2a229
MD5 c7864ce3577cb5615dc41002c6544b81
BLAKE2b-256 815f13159ea03326cdad2bf744743193aabc5be62ab31ff3b5840e4f20aacbf9

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ed7f8e46dcb7e4f55cbb76668f2534765c6dd9e7ecfe84ec5267c1b9e531315
MD5 301837532d318b09bf8d62b6c0976c20
BLAKE2b-256 72edd98b19769c4e277c3a9ea6f0a578a0741cb8c4b646262d65aaa6ffa3a259

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ebb6f1002d6e70ef713c58cb3154d6e4076e5083b16476923b20d0af7d15b99
MD5 af0ef60fdbb4f932834d657b93b42a0e
BLAKE2b-256 110b9e5319265bd81fbd0a52b929c31df23eca10f9de5927920ce5885267ef31

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 673f1a6f0a38ae03c077c5ad87cb37992a385e76acd73fd164f0efa12d286476
MD5 cee6c527f53a358965a3d3209f034719
BLAKE2b-256 ba264682a9160590794ed5670c83d18191fb80b9b9b47a7bcb86a6d4a110c39e

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 223fe0da9d648c8ca1777fb789326f1b0b430693943096610790dc3499f46603
MD5 647b715a35811fd579ce8d855e18af16
BLAKE2b-256 d8d9ae066ede5dc02f5d9d0f0fc1147f03766d484c2cde0d20709d106dd82c2c

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: contourpy-1.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 158.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 edfd448ccd856a48089addd8b4a4c57f1c21bccc0b79ed70aa9fcdfcfbdc47fb
MD5 97791f25debd185cf274bf356ca8e1a1
BLAKE2b-256 d91a89609299b242f2201647420a87470178e86be6192de91a93330482a6404b

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: contourpy-1.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 140.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8f92cc5b8f8aaf17850214e1c6a5d4cb5ecfbb73bb54f4a6d84d85953b7c4e6a
MD5 cdb09fd603d365d3bbe713a73d1c447d
BLAKE2b-256 3060a6d7d03499bf7d7b8d6309cef487855d304123d4a9ecbe2637261be972fc

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1fd92ced41c16317c5e71c03f28c8f79dd664fe5b9f0b4509b5f2efa8811bf13
MD5 c035b10beec3471341cd73fc45163ab1
BLAKE2b-256 14705151e47aa31439dfef536ef097515aec6a5b39e55eb834e3fbb35f481826

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f9c681231f390722a84f7329a0d28617992878f5f89f40abe19970826abdbba2
MD5 f044d3e960f5011a9902b4a3d04be578
BLAKE2b-256 15c4845f72fa7fd542ecfb6451acfb99ce8ba28761c2939b656bc663e940227b

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 69dd20c4639d9076a558ca47ade589fb9cd4b7bae1e89d5ea0fda8ae2aa752db
MD5 f7f15b2dc4a7bb30c064971834d8e0fc
BLAKE2b-256 08b0792297112675a45aca5428cbead09f9361bccc9070b46190394228282e6b

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9ae0cca3a482d84c306d18f624d374d1c60c2d2ffb814c1057b709ce37aa2a0
MD5 2ea56c084673b6a0f8573969db769f5f
BLAKE2b-256 871962a1a29d38dd678fb765fc389b00e412894e3f9451f7a197bb24ba96a141

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8885b42c023057c9a6dd9a8218667330f93142c67404db13e95a4a4dd2505c6d
MD5 2422d0152f5beb0873755b6ff716e9de
BLAKE2b-256 ba1215aae860b354c0603ab6fb0b61be6beaddc895e67dc68df6bb654f0f1d34

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b67300ba17b4335c25a9d78771bcdb638e38b2fd3fac54af89968464715b046a
MD5 5070c7ef90921f0a8715aaace6c13d29
BLAKE2b-256 5af8153aca90bbec3b471bbc5fe5080c66d69e78b2860fa0165f8b73b7007f48

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed83393494d16e6e513d303f12f7c481cdf0c6152077c0e0cabdea339b004c5f
MD5 f9918a5d951e8fa86511f5062b46eebd
BLAKE2b-256 f41d90bc00c5c9b008992574bd7711b568eccef279440ed179f69494d2a976d9

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e171b70bb9cd6bb343947f703962f94f52f5f675eafd69992f31304a1d9a97ea
MD5 0b21cd2a60ef272fbcb1efca54531128
BLAKE2b-256 26c77b1d869e1d41c8a7d7bf8edada9d86eda2cbc4232f1228718f2836114297

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cbba51e9d48fab112a36d229ee30c48a775a05eb87cee2acc291305cd7d4f5cb
MD5 a72c93f7660594aadf6bd1c0e99c1bf5
BLAKE2b-256 e75cbd17d188e01a40ae222b9694676f1097936522ed6fb7c5d5b21d90aa0d94

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: contourpy-1.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 158.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cf858131bb2984bc9931923dfeeffe38dfa9843ff226caa1f6e4be7c61ac4560
MD5 db399adb0b10037b8531f91d5ef72a79
BLAKE2b-256 30f9c23c115901ac54cf639e1cc6a71373e354865ac3f0a309ffc4183da5d8e4

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: contourpy-1.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 141.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 516734c86e2bb0fac30aec3a4d37bf5af16e836577a1427707af23cb3e1736ef
MD5 160b8b797c5e610d0defdc020d5d7031
BLAKE2b-256 19103c4d9eaeb68888a04486de6d600d3519c9ded4e0ac0bf93325a02051895d

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 555a2c05be1767889218441c28d7d2207fd6f1d5846d8b591e20a86de29a25fb
MD5 58a53f3c2c3c6aea37fa9a230e58c149
BLAKE2b-256 9479d596de8bee57a2e5ed369cc47bc904c99a2b398d04ecc4f711ade8d84f96

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5172c1f45fd6b2b5355b3436b15cffb973be49733cc06f9348b008ff0383ff90
MD5 df8820747651cd2b9cbb568aed3b04e8
BLAKE2b-256 6ddcb2ebe3ac4db830feeb62cbd0cec41b854a1c9ea01cee05f4b3f843afa6da

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a413c799b6335df0655c01a90b2e4ba33158c56853955b680e84743485467689
MD5 4342ac61d2cafae78ecb2d6d2d812bd5
BLAKE2b-256 1aeafbbc5e08d8c755de23c1a777aa32c64950b92eb25b8f0d4363bf9a6bcd0c

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0161eb7364f6046521741841406fd3115a75a8cb8c2485f81d98eab0affe5f88
MD5 4dac08f88f8c76fe27ede5167e79297d
BLAKE2b-256 35126cf67ab2c3b4532892691345eac5b43481b83642380e1f9f8da90fad93a0

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9d5d820190cc8d875343b88b89f9a5bc354cb3f7868e3dcc47ca82f97002f110
MD5 f879f82947ae652c923ebbddd13721e4
BLAKE2b-256 206b6cb35dedc9b20bcf2d12747c9bb40f8ae11063b87a1f8b28afef87cb27dc

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 34d856e02a450265f0fceb7ecbf41112d9bf743da122b669771af6efc404b917
MD5 42a9748ec78f3bcc919e63fdbdfa6e3c
BLAKE2b-256 49d7691fd25cc98aa9e35e19d1c8493ded9ebd8c17ead62472c48441f2b53cf0

See more details on using hashes here.

File details

Details for the file contourpy-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for contourpy-1.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df778c0cfb7cd6b7c9f954dd9dbcc536bf76bf465595a13b9108c59eb7de6568
MD5 94bcc7bfcb6b11b795ef8615164ca0ee
BLAKE2b-256 547289271c9053a6d3b9fe6c5e59bf526033d4ec539daa018cd38d963fc28ee9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page